You can analyze for a copper compound in water using an instrument called a spectrophotometer. [A spectrophotometer is a scientific instrument that measures the amount of light (of a given wavelength) that is absorbed by the solution] The amount of light absorbed at a given wavelength of light (A) depends directly on the mass of compound per liter of solution. To calibrate the spectrophotometer, you collect the following data: Plot the absorbance (A) against the mass of copper compound per liter (g/L), and find the slope ( m ) and intercept ( b ) (assuming that A is y and the amount in solution is x in the equation for a straight line, y = mx + b ). What is the mass of copper compound in the solution in g/L and mg/mL when the absorbance is 0.635?
You can analyze for a copper compound in water using an instrument called a spectrophotometer. [A spectrophotometer is a scientific instrument that measures the amount of light (of a given wavelength) that is absorbed by the solution] The amount of light absorbed at a given wavelength of light (A) depends directly on the mass of compound per liter of solution. To calibrate the spectrophotometer, you collect the following data: Plot the absorbance (A) against the mass of copper compound per liter (g/L), and find the slope ( m ) and intercept ( b ) (assuming that A is y and the amount in solution is x in the equation for a straight line, y = mx + b ). What is the mass of copper compound in the solution in g/L and mg/mL when the absorbance is 0.635?
Solution Summary: The author explains that the absorbance should be plotted against the mass of the copper and the slope, intercept, and mass in solution were determined.
You can analyze for a copper compound in water using an instrument called a spectrophotometer. [A spectrophotometer is a scientific instrument that measures the amount of light (of a given wavelength) that is absorbed by the solution] The amount of light absorbed at a given wavelength of light (A) depends directly on the mass of compound per liter of solution. To calibrate the spectrophotometer, you collect the following data:
Plot the absorbance (A) against the mass of copper compound per liter (g/L), and find the slope (m) and intercept (b) (assuming that A is y and the amount in solution is x in the equation for a straight line, y = mx + b). What is the mass of copper compound in the solution in g/L and mg/mL when the absorbance is 0.635?
There is an instrument in Johnson 334 that measures total-reflectance x-ray fluorescence (TXRF) to do elemental analysis (i.e., determine what elements are present in a sample). A researcher is preparing a to measure calcium content in a series of well water samples by TXRF with an internal standard of vanadium (atomic symbol: V). She has prepared a series of standard solutions to ensure a linear instrument response over the expected Ca concentration range of 40-80 ppm. The concentrations of Ca and V (ppm) and the instrument response (peak area, arbitrary units) are shown below. Also included is a sample spectrum. Equation 1 describes the response factor, K, relating the analyte signal (SA) and the standard signal (SIS) to their respective concentrations (CA and CIS).
Ca, ppm
V, ppm
SCa, arb. units
SV, arb. units
20.0
10.0
14375.11
14261.02
40.0
10.0
36182.15
17997.10
60.0
10.0
39275.74
12988.01
80.0
10.0
57530.75
14268.54
100.0…
A mixture of 0.568 M H₂O, 0.438 M Cl₂O, and 0.710 M HClO are enclosed in a vessel at 25 °C.
H₂O(g) + C₁₂O(g) = 2 HOCl(g)
K = 0.0900 at 25°C
с
Calculate the equilibrium concentrations of each gas at 25 °C.
[H₂O]=
[C₁₂O]=
[HOCI]=
M
Σ
M
What units (if any) does the response factor (K) have? Does the response factor (K) depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Creation of Chemistry - The Fundamental Laws: Crash Course Chemistry #3; Author: Crash Course;https://www.youtube.com/watch?v=QiiyvzZBKT8;License: Standard YouTube License, CC-BY