Bundle: Inquiry Into Physics, 8th + Webassign Printed Access Card For Ostdiek/bord's Inquiry Into Physics, 8th Edition, Single-term
Bundle: Inquiry Into Physics, 8th + Webassign Printed Access Card For Ostdiek/bord's Inquiry Into Physics, 8th Edition, Single-term
8th Edition
ISBN: 9781337605045
Author: Vern J. Ostdiek, Donald J. Bord
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 4C

A spoils car is advertised to have a maximum cornering acceleration of 0.85 g.
(a) What is the maximum speed that the car can go around a curve with a 100-m radius?
(b) What is its maximum speed for a 50-m radius curve?
(c) If wet pavement reduces its maximum cornering acceleration to 0.6 g, what do the answers to (a) and (b) become?

Expert Solution
Check Mark
To determine

(a)

Maximum speed of car around curve of radius 100m.

Answer to Problem 4C

Maximum speed of car around the curve of radius 100 m is 28.61 m/s.

Explanation of Solution

Given:

Acceleration in multiples of (a) = 0.85gRadius of the curver = 100 m.

Formula used:

Acceleration is given by the formula,

a=v2r.

Calculation:

a=0.85gwhere g = 9.81 m/s2a=0.85×9.81a=8.33m/s2

We have value for a, now using formula,

a=v2rv=arv=8.33×100v=28.86m/s.

Conclusion:

The maximum speed of car on the curve of 100m is 28.61m/s.

Expert Solution
Check Mark
To determine

(b)

The speed of a car around a curve of 50 m.

Answer to Problem 4C

The speed of car around a curve of 50 m is 20.40 m/s.

Explanation of Solution

Given:

The radius of the curver = 50 mAcceleration of car = 0.85g

Formula used:

Calculation:

Using the same formula above

a=8.33m/s2v=arv=8.33×50v=20.40m/s.

Conclusion:

The speed of the car on a curve of 50 m is 20.40 m/s.

Expert Solution
Check Mark
To determine

(c)

The speed of a car around a curve of 100 m and around a curve of

50 m if acceleration is changed to 0.6g.

Answer to Problem 4C

The speed of car around a curve of 100 m is 24.24 m/s

The speed of car around the curve of 50 m is 17.14 m/s.

Explanation of Solution

Given:

The radius of the curver = 100 mThe radius of the curver = 50 mAcceleration of cara = 0.6g.

Calculation:

Similarly as above,

a=0.6ga=0.6×9.81=5.88m/s2v=ar

When r = 100m.

v=5.88×100v=24.24m/s

Now, when r = 50m.

v=5.88×50v=17.14m/s.

Conclusion:

The speed of the car on a curve of100 m is 24.24 m/sThe speed of the car on a curve of50 m is 17.14 m/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2m
Part A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?
The particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-

Chapter 1 Solutions

Bundle: Inquiry Into Physics, 8th + Webassign Printed Access Card For Ostdiek/bord's Inquiry Into Physics, 8th Edition, Single-term

Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - Prob. 11QCh. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - Prob. 15QCh. 1 - (Indicates a review question, which means it...Ch. 1 - Prob. 17QCh. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - Prob. 24QCh. 1 - Prob. 25QCh. 1 - Prob. 26QCh. 1 - Prob. 27QCh. 1 - A yacht is 20 m long. Express this length in feet.Ch. 1 - Prob. 2PCh. 1 - A convenient time unit for short time intervals is...Ch. 1 - One mile is equal to 1,609 m. Express this...Ch. 1 - A hypnotist, watch hanging from a chain swings...Ch. 1 - The quartz crystal used in an electric watch...Ch. 1 - A passenger jet flies from one airport to another...Ch. 1 - At the 2006 Winter Olympics in Torino, Italy, U.S....Ch. 1 - A runner in a marathon passes the 5-mile mark at 1...Ch. 1 - . The Moon is about 3.8 ×108 m from Earth....Ch. 1 - . In Figure 1.13, assume that m/s and m/s. Use a...Ch. 1 - . On a day when the wind is blowing toward the...Ch. 1 - . How far does a car going 25 m/s travel in 5 s?...Ch. 1 - . A long-distance runner has an average speed of 4...Ch. 1 - . Draw an accurate graph showing distance versus...Ch. 1 - The graph in Figure 1.38 shows the distance versus...Ch. 1 - . A high-performance sports car can go from 0 to...Ch. 1 - . As a baseball is being thrown it goes from 0 to...Ch. 1 - . A child attaches a rubber ball to string and...Ch. 1 - . A child sits on the edge of spinning...Ch. 1 - . A runner is going 10 m/s around a curved section...Ch. 1 - During a NASCAR race, a car goes 50 m/s around a...Ch. 1 - . A rocket accelerates from rest at a rate of 64...Ch. 1 - . Initially staionary, a train has a constant...Ch. 1 - . (a) Draw an accurate graph of the speed versus...Ch. 1 - . Draw an accurate graph of the velocity versus...Ch. 1 - . A skydiver jumps out of a helicopter and falls...Ch. 1 - . A rock is dropped off the side of a bridge and...Ch. 1 - . The roller coaster in Figure 1.39 starts at the...Ch. 1 - . During takeoff, an airplane goes from 0 to 50...Ch. 1 - Prob. 31PCh. 1 - . A bungee jumper falls for 1.3 s before the...Ch. 1 - . A drag-racing car goes from 0 to 300 mph in 5 s....Ch. 1 - Prob. 1CCh. 1 - The Moon's mass is 7.35 1022 kg, and it moves in a...Ch. 1 - A car is stopped at a red light. When the light...Ch. 1 - A spoils car is advertised to have a maximum...Ch. 1 - A spacecraft lands on a newly discovered planet...Ch. 1 - Prob. 6CCh. 1 - Prob. 7CCh. 1 - A race car starts from rest on a circular track...Ch. 1 - Prob. 9C
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY