
Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 41GP
(a)
To determine
The wavelength of light in millimeter.
(b)
To determine
The wavelength of light in inches.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Given water's mass of 18g/mole and the value of the fundamental charge (charge magnitude of the electron and proton), use the largest charge density from the article to determine what fraction of water molecules became ionized (charged) due to triboelectric effects when it flows through the material that causes the largest charge transfer. Give your answer in e/molecule, or electrons transferred per molecule of water. For instance, a value of 0.2 means only one in five molecules of water loses an electron, or that 0.2=20% of water molecules become charged
no AI, please
Sketch the resulting complex wave form, and then say whether it is a periodic or aperiodic wave.
Chapter 1 Solutions
Physics (5th Edition)
Ch. 1.1 - The laws of physics apply to which of the...Ch. 1.2 - Rank the following lengths (A, B, C, and D) in...Ch. 1.3 - Give the dimensions of each of the following...Ch. 1.4 - Rank the following numbers in order of increasing...Ch. 1.5 - To convert a length of 6 ft to its equivalent in...Ch. 1.6 - Give an order-of-magnitude estimate for the speed...Ch. 1.7 - (a) Can two cars have the same speed but different...Ch. 1 - Can dimensional analysis determine whether the...Ch. 1 - If a distance d has units of meters, and a time T...Ch. 1 - Is it possible for two quantities to (a) have the...
Ch. 1 - The frequency of a pendulum is the number of...Ch. 1 - Albert runs 34 m to the right in 10 s. Isaac runs...Ch. 1 - Give an order-of-magnitude estimate for the time...Ch. 1 - Give an order-of-magnitude estimate for the length...Ch. 1 - The Hunger Games The movie The Hunger Games...Ch. 1 - BIO The Thickness of Hair A human hair has a...Ch. 1 - The speed of light in a vacuum is approximately...Ch. 1 - A Fast Computer IBM has a computer it calls the...Ch. 1 - Which of the following equations are dimensionally...Ch. 1 - Which of the following quantities have the...Ch. 1 - Which of the following quantities have the...Ch. 1 - Which of the following quantities have the...Ch. 1 - Velocity is related to acceleration and distance...Ch. 1 - Acceleration is related to distance and time by...Ch. 1 - The time t required for an object to fall from...Ch. 1 - Newtons second law (to be discussed in Chapter 5)...Ch. 1 - The time T required for one complete oscillation...Ch. 1 - The speed of light to five significant figures is...Ch. 1 - A parking lot is 124.3 m long and 41.06 m wide....Ch. 1 - On a fishing trip you catch a 2.77-lb bass, a...Ch. 1 - How many significant figures are there in (a)...Ch. 1 - What is the area of a circle of radius (a) 11.37 m...Ch. 1 - The first several digits of , the ratio of the...Ch. 1 - Rank the following speeds in order of increasing...Ch. 1 - The Ark of the Covenant is described as a chest of...Ch. 1 - A car drives on a highway with a speed of 68 mi/h....Ch. 1 - Angel Falls Water going over Angel Falls, in...Ch. 1 - An electronic advertising sign repeats a message...Ch. 1 - BIO Blue Whales The blue whale (Balaenoptera...Ch. 1 - The Star of Africa The Star of Africa, a diamond...Ch. 1 - BIO Woodpecker Impact When red-headed woodpeckers...Ch. 1 - Predict/Calculate Many highways have a speed limit...Ch. 1 - BIO Mantis Shrimp Peacock mantis shrimps...Ch. 1 - A Jiffy The American physical chemist Gilbert...Ch. 1 - The Mutchkin and the Noggin (a) A mutchkin is a...Ch. 1 - Suppose 1.0 cubic meter of oil is spilled into the...Ch. 1 - The acceleration of gravity is approximately 9.81...Ch. 1 - BIO Squid Nerve Impulses Nerve impulses in giant...Ch. 1 - Give a ballpark estimate of the number of seats in...Ch. 1 - Estimate the speed at which your hair grows. Give...Ch. 1 - Milk is often sold by the gallon in plastic...Ch. 1 - New York is roughly 3000 miles from Seattle. When...Ch. 1 - Which of the following equations are dimensionally...Ch. 1 - Which of the following quantities have the...Ch. 1 - Prob. 41GPCh. 1 - Glacial Speed On June 9, 1983, the lower part of...Ch. 1 - One liter of pure gold weighs 42.5 lb. If you...Ch. 1 - What is the speed in miles per second or a beam or...Ch. 1 - BIO Rattlesnake Frequency A timber rattlesnake...Ch. 1 - BIO A single human red blood cell has a mass of...Ch. 1 - BIO Com Growth Sweet corn plants can grow 4.1 cm...Ch. 1 - BIO Mosquito Courtship Male mosquitoes in the mood...Ch. 1 - Predict/Calcuiate A Porsche sports car can...Ch. 1 - A Speeding Bullet The fastest commercially...Ch. 1 - BIO Human Nerve Fibers Type A nerve fibers in...Ch. 1 - Bio Brain Growth The mass of a newborn baby's...Ch. 1 - The Huygens Probe MASAs Cassini mission to Saturn...Ch. 1 - BIO Spin-Dry Dragonflies Some dragonflies are...Ch. 1 - Acceleration is related to velocity and time by...Ch. 1 - The period T of a simple pendulum is the amount of...Ch. 1 - Driving along a crowded freeway, you notice that...Ch. 1 - Prob. 58PPCh. 1 - Prob. 59PPCh. 1 - Prob. 60PPCh. 1 - Prob. 61PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- During a concentric loading of the quadriceps muscle in the upper leg, an athlete extends his lower leg from a vertical position (see figure (a)) to a fully extended horizontal position (see figure (b)) at a constant angular speed of 45.0° per second. Two of the four quadriceps muscles, the vastis intermedius and the rectus femoris, terminate at the patellar tendon which is attached to the top of the tibia in the lower leg. The distance from the point of attachment of the patellar tendon to the rotation axis of the tibia relative to the femur is 4.10 cm in this athlete. a b (a) The two quadriceps muscles can exert a maximum force of 225 N through the patellar tendon. This force is applied at an angle of 25.0° to the section of the tibia between the attachment point and the rotation axis. What is the torque (in N⚫ m) exerted by the muscle on the lower leg during this motion? (Enter the magnitude.) N⚫ m (b) What is the power (in W) generated by the athlete during the motion? W (c)…arrow_forward= A hanging weight, with a mass of m₁ = 0.365 kg, is attached by a rope to a block with mass m₂ 0.835 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R₁ = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As the weight falls, the block slides on the table, and the coefficient of kinetic friction between the block and the table is μk = 0.250. At the instant shown, the block is moving with a velocity of v; = 0.820 m/s toward the pulley. Assume that the pulley is free to spin without friction, that the rope does not stretch and does not slip on the pulley, and that the mass of the rope is negligible. mq R₂ R₁ mi (a) Using energy methods, find the speed of the block (in m/s) after it has moved a distance of 0.700 m away from the initial position shown. m/s (b) What is the angular speed of the pulley (in rad/s) after the block has moved this…arrow_forwardno AI, pleasearrow_forward
- no AI, pleasearrow_forwardno AI, pleasearrow_forwardTwo astronauts, each having a mass of 95.5 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 4.60 m/s. Treating the astronauts as particles, calculate each of the following. CG × d (a) the magnitude of the angular momentum of the system kg m2/s (b) the rotational energy of the system KJ By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? kg m2/s (d) What are their new speeds? m/s (e) What is the new rotational energy of the system? KJ (f) How much work is done by the astronauts in shortening the rope? KJarrow_forward
- A uniform horizontal disk of radius 5.50 m turns without friction at w = 2.55 rev/s on a vertical axis through its center, as in the figure below. A feedback mechanism senses the angular speed of the disk, and a drive motor at A ensures that the angular speed remain constant while a m = 1.20 kg block on top of the disk slides outward in a radial slot. The block starts at the center of the disk at time t = 0 and moves outward with constant speed v = 1.25 cm/s relative to the disk until it reaches the edge at t = 360 s. The sliding block experiences no friction. Its motion is constrained to have constant radial speed by a brake at B, producing tension in a light string tied to the block. (a) Find the torque as a function of time that the drive motor must provide while the block is sliding. Hint: The torque is given by t = 2mrvw. t N.m (b) Find the value of this torque at t = 360 s, just before the sliding block finishes its motion. N.m (c) Find the power which the drive motor must…arrow_forward(a) A planet is in an elliptical orbit around a distant star. At its closest approach, the planet is 0.670 AU from the star and has a speed of 54.0 km/s. When the planet is at its farthest distance from the star of 36.0 AU, what is its speed (in km/s)? (1 AU is the average distance from the Earth to the Sun and is equal to 1.496 × 1011 m. You may assume that other planets and smaller objects in the star system exert negligible forces on the planet.) km/s (b) What If? A comet is in a highly elliptical orbit around the same star. The comet's greatest distance from the star is 25,700 times larger than its closest distance to the star. The comet's speed at its greatest distance is 2.40 x 10-2 km/s. What is the speed (in km/s) of the comet at its closest approach? km/sarrow_forwardYou are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a new game of skill. A thin rod of mass M = 0.505 kg and length = 2.70 m hangs from a friction-free pivot at its upper end as shown in the figure. Pivot Velcro M Incoming Velcro-covered ball m The front surface of the rod is covered with Velcro. You are to throw a Velcro-covered ball of mass m = 1.25 kg at the rod in an attempt to make it swing backward and rotate all the way across the top. The ball must stick to the rod at all times after striking it. If you cause the rod to rotate over the top position (that is, rotate 180° opposite of its starting position), you win a stuffed animal. Your friend volunteers to try his luck. He feels that the most torque would be applied to the rod by striking it at its lowest end. While he prepares to aim at the lowest point on the rod, you calculate how fast he must throw the ball to win the stuffed animal with this…arrow_forward
- 56 is not the correct answer!arrow_forward81 SSM Figure 29-84 shows a cross section of an infinite conducting sheet carrying a current per unit x-length of 2; the current emerges perpendicularly out of the page. (a) Use the Biot-Savart law and symmetry to show that for all points B •P x B P'. Figure 29-84 Problem 81. P above the sheet and all points P' below it, the magnetic field B is parallel to the sheet and directed as shown. (b) Use Ampere's law to prove that B = ½µλ at all points P and P'.arrow_forward(λvacuum =640nm) red light (λ vacuum = 640 nm) and green light perpendicularly on a soap film (n=1.31) A mixture of (a vacuum = 512 nm) shines that has air on both side. What is the minimum nonzero thickness of the film, so that destructive interference to look red in reflected light? nm Causes itarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning