
A compact fluorescent light (CFL) bulb is very energy-efficient. A 22W CFL bulb has the same brightness as a 100W incandescent bulb. (Note that these calculations ignore the fact that the CFL bulb can last up to 10 times as long as the incandescent bulb. This would increase your savings even more.)
- a. If you have this light bulb on for 5 hours a day, for 350 days during a year, how many hours is it on?
- b. A kilowatt is 1000 watts. The kilowatt-hour is a common unit for energy, obtained by multiplying the power in kilowatts by the time used in hours. How many kilowatt-hours (kWh) will you use when burning the 100W bulb for the year (don’t forget to convert the 100W to kW first)?
- c. How many kilowatt-hours (kWh) will you use when burning the 22W bulb for the year (be sure to convert the 22W to kW before multiplying by the time in hours)?
- d. Assuming that the cost of electricity is 15¢ per kWh, what is the cost of using the 100W incandescent bulb for the year?
- e. Assuming this same cost, what is the cost of using the 22W CFL bulb for the year?
- f. How much do you save per year by using the 22W CFL bulb?
- g. How much would you save every year if you replaced 20 of the 100W incandescent bulbs with the 22W CFL bulbs?
(a)

The number of hours the light bulb is on.
Answer to Problem 3SP
The number of hours the light bulb is on is
Explanation of Solution
Given info: Light bulb is on for 5 hours a day for 350 days during a year.
The number of hours the light bulb is on is,
Conclusion:
The number of hours the light bulb is on is
(b)

The number of kilo-watt hours used when the light bulb is on for a year.
Answer to Problem 3SP
The number of kilo-watt hours used when the light bulb is on for a year is
Explanation of Solution
Given info: Light bulb is on for 5 hours a day for 350 days during a year.
From (a), the number of hours the light bulb is on is
The number of kilo-watt hours used when the light bulb is on for a year is,
Conclusion:
The number of kilo-watt hours used when the light bulb is on for a year is
(c)

The number of kilo-watt hours used when the 22 W light bulb is on for a year.
Answer to Problem 3SP
The number of kilo-watt hours used when the 22 W light bulb is on for a year is
Explanation of Solution
Given info: Light bulb is on for 5 hours a day for 350 days during a year.
From (a), the number of hours the light bulb is on is
The number of kilo-watt hours used when the 22 W light bulb is on for a year is,
Conclusion:
The number of kilo-watt hours used when the 22 W light bulb is on for a year is
(d)

The cost of using 100 W bulb for a year.
Answer to Problem 3SP
The cost of using 100 W bulb for a year is
Explanation of Solution
Given info: Cost of electricity is
From (b), number of kilo-watt hours used when the 100 W light bulb is on for a year is
The cost of using 100 W bulb for a year is,
Conclusion:
The cost of using 100 W bulb for a year is
(e)

The cost of using 22 W bulb for a year.
Answer to Problem 3SP
The cost of using 22 W bulb for a year is
Explanation of Solution
Given info: Cost of electricity is
From (b), number of kilo-watt hours used when the 22 W light bulb is on for a year is
The cost of using 22 W bulb for a year is,
Conclusion:
The cost of using 22 W bulb for a year is
(f)

The savings per year while using 22 W CFL bulb.
Answer to Problem 3SP
The savings per year while using 22 W CFL bulb is
Explanation of Solution
Given info: Cost of electricity is
The savings per year while using 22 W CFL bulb is the difference between the cost of using 100 W and 22 W bulbs. Therefore, the saving is given by,
Conclusion:
The savings per year while using 22 W CFL bulb is
(g)

The savings per year while twenty 100 W bulbs are replaced by 22 W CFL bulb.
Answer to Problem 3SP
The savings per year while twenty 100 W bulbs are replaced by 22 W CFL bulb is
Explanation of Solution
Given info: Cost of electricity is
The savings per year while using 22 W CFL bulb is
Conclusion:
The savings per year while twenty 100 W bulbs are replaced by 22 W CFL bulb is
Want to see more full solutions like this?
Chapter 1 Solutions
Physics of Everyday Phenomena
Additional Science Textbook Solutions
Laboratory Manual For Human Anatomy & Physiology
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Cosmic Perspective Fundamentals
Microbiology Fundamentals: A Clinical Approach
Physics of Everyday Phenomena
Chemistry: A Molecular Approach (4th Edition)
- You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forward
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





