Conceptual Integrated Science
3rd Edition
ISBN: 9780135197394
Author: Hewitt, Paul G., LYONS, Suzanne, (science Teacher), Suchocki, John, Yeh, Jennifer (jennifer Jean)
Publisher: PEARSON EDUCATION (COLLEGE)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 30TE
To determine
To find:
The number of suns that would similarly fit between Earth and sun?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
- How far (in km) is 3.5 lightyears(ly) – the distance traveled by light in one Earth year?
- How much is this same value in parsecs and (C) in astronomical units (AU)?
Use 299,732 km/s for the speed of light (c) and 1 year = 365 days.
Show your solution and write your answer in both regular notation and scientific notation.
Solve the second one
As we discuss in class, the radius of the Earth is approximately 6370 km. Theradius of the Sun, on the other hand, is approximately 700,000 km. The Sun is located,on average, one astronomical unit (1 au) from the Earth.
Imagine that you stand near Mansueto Library, at the corner of 57th and Ellis.Mansueto’s dome is 35 feet (10.7 meters) high. Let’s imagine we put a model of theSun inside the dome, such that it just fits — that is, the model Sun’s diameter is 35 feet
The nearest star to the Solar System outside of the Sun is Proxima Centauri,which is approximately 4.2 light years away. Given the scale model outlined above,how far would a model Proxima Centauri be placed from you? Give your answer inmiles and km
Chapter 1 Solutions
Conceptual Integrated Science
Ch. 1 - What launched the era of modern science in the...Ch. 1 - Why do we believe that focusing on math too early...Ch. 1 - Specifically, what do we mean when we say that a...Ch. 1 - What is the test for whether or not a hypothesis...Ch. 1 - How did Galileo disprove Aristotles idea that...Ch. 1 - Distinguish among a scientific fact, a hypothesis,...Ch. 1 - How does the definition of the world theory differ...Ch. 1 - Your friend says that scientific theories cannot...Ch. 1 - What are the two domains of science and religion?Ch. 1 - Why must one not have to choose between science...
Ch. 1 - Clearly distinguish between science and...Ch. 1 - In what sense does physics underlie chemistry?Ch. 1 - In what sense is biology more complex than the...Ch. 1 - What is the value of studying integrated science,...Ch. 1 - How does the Aurora borealis relate to the field...Ch. 1 - Why is the aurora borealis best seen in winter...Ch. 1 - If the Suns rays were at 450 to a vertical pillar,...Ch. 1 - Eratosthenes measured the height of the vertical...Ch. 1 - Examine the nearly similar small and large green...Ch. 1 - Knowing and using Earths radius, show that the...Ch. 1 - If the angle between the two verticals extended to...Ch. 1 - Are the various branches of science separate, or...Ch. 1 - In what way is the printing press like the intenet...Ch. 1 - Which of the following are scientific hypotheses?...Ch. 1 - If earth were smaller than it is, but...Ch. 1 - Prob. 30TECh. 1 - Discuss the value Galileo placed on...Ch. 1 - What do science, art, and religion have in common?...Ch. 1 - If the tree that casts solar images around Lillian...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why did early human cultures observe astronomical phenomena? Was it for scientific research?arrow_forwardGalileo’s telescope showed him that Venus has a large angular diameter (61 arc seconds) when it is a crescent and a small angular diameter (10 arc seconds) when it is nearly full. Use the small-angle formula to find the ratio of its maximum distance to its minim um distance. Is this ratio compatible with the Ptolemaic shown on the right-hand page of Concept Art 4A? (Hint: See Reasoning with Numbers 3-1.)arrow_forwardWhat are the three basic components of a modern astronomical instrument? Describe each in one to two sentences.arrow_forward
- How Do We Know? Why must a scientific argument dealing with some aspect of nature take all of the known evidence into account?arrow_forwardexpressed as length { in meters seconds squared, or . h divide out and T = VT2. The factor 2T has no units so d in the analysis. 10. The period of rotation of the Sun is 2.125 x 106 seconds. This is equivalent to 2.125 (2) ms (1) us (3) Ms (4) Ts 11. Human hair grows at the rate of 3 nanometers per second. This rate is equivalent to (1) 3 x 10-3 m/s (2) 3 x 10-6 m/s (3) 3 x 10-9 m/s (4) 3 x 10-12 m/s 12. The wavelength of red light is 7 x 10-7 meter. Express this value in nanometers. 13. If m represents mass in kg, v represents speed in m/s, and r represents radius in m, show that the force F in the formula F = in the unit kg m/s2. mv? can be expressed 14. If PE, represents the potential energy stored in a spring in kg m2/s², and x represents the change in spring length from its equilibrium position in m, what is the unit for the spring constant k in the formula REarrow_forwardPart 3 1. The diameter of the Sun is 1,391,400 km. The diameter of the Moon is 3,474.8 km. Find the ratio, r= Dsa/Dsvan between the sizes. 2. From the point of view of an obs erver on Eanth (consider the Earth as a point-like object), during the eclipse, the Moon covers the Sun exactly. Sketch a picture to illustrate this fact. Use a nuler to get a straight line. Your drawing does not need to be in scale. 3. The Sun is 1 Astronomical Unit (AU) away from the Earth. Find the distance between the Earth and the Moon in AU's using the ratio of similar triangles. Show your work. DEM= AU. Convert this to kilometers. Use 1 AU = 149,600,000 km. DEM = km.arrow_forward
- a method for determining the sizes of the orbits of pl from the sun than Earth. His method involved noting of days between the times that a planet was in the pc A and B in the diagram. Using this time and the num each planet's year, he calculated c and d. a. For Mars, c= 55.2 and d= 103.8. How far is Mars in astronomical units (AU)? One astronomical un the average distance from Earth to the center of th 93 million miles. b. For Jupiter, c 21.9 and d= 100.8. How far is Jup %3D sun in astronomical units? lo olpno er ort to rt .onte eteem-21 o to bre e ne ern 100 o ho aotem t elbl erl pnibioda lert pribiortarrow_forwardSuppose you were given a 3 in diameter ball to represent the Earth and a 1 in diameter ball to represent the Moon. (The actual ratio of Earth diameter to Moon diameter is 3.7 to 1.) The actual average Earth–Moon distance is about 384,000 kilometers, and Earth’s diameter is about 12,800 kilometers. How many “Earth diameters” is the distance from Earth to the Moon? Based on your answer to Question 2, what is the correct scaled distance of the Moon, using the 3-inch ball as Earth? The Sun’s actual diameter is about 1,400,000 kilometers. How many “Earth diameters” is this? Given your 3-inch Earth, how large (i.e what diameter) of a ball would you need to represent the Sun? Give your answer in feet. The average Earth–Sun distance is about 149,600,000 km. To represent this distance to scale, how far away would you have to place your 3-inch Earth from your Sun? Give your answer in feet. Could we use this scale to visualize the solar system instead of just the Earth and Moon? Why or Why…arrow_forwardA small light source located 1 mm in front of a 1-m2m2 opening illuminates a wall behind. If the wall is 1 mm behind the opening (2 mm from the light source), the illuminated area covers 4 m2m2. How many square meters are illuminated if the wall is 3 mm from the light source? 5 mm? 10 mm?arrow_forward
- Next you will (1) convert your measurement of the semi-major axis from arcseconds to AU, (2) convert your measurement of the period from days to years, and (3) calculate the mass of the planet using Newton's form of Kepler's Third Law. Use Stellarium to find the distance to the planet when Skynet took any of your images, in AU. Answer: 4.322 AU Use this equation to determine a conversion factor from 1 arcsecond to AU at the planet's distance. You will need to convert ? = 1 arcsecond to degrees first. Answer: 2.096e-5 AU (2 x 3.14 x 4.322 x (.000278/360) = 2.096e-5) Next, use this number to convert your measurement of the moon's orbital semi-major axis from arcseconds to AU. A) Calculate a in AU. B) Convert your measurement of the moon's orbital period from days to years. C) By Newton's form of Kepler's third law, calculate the mass of the planet. D) Finally, convert the planet's mass to Earth masses: 1 solar mass = 333,000 Earth masses.arrow_forwardThe smallest detail visible through a Earth-based telescope is about 1.00 arcsecond in diameter. Use the small angle formula to determine to the right number of significant figures the size of the object in meters this would represent on Mars as it is at the closest distance from Earth. (??????? ???????? (arc−seconds)2.06×105=?????? ??????????????? ; ???−????????????−????=5.46×105 ??).arrow_forwardHelp me please. Thanksarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax