
EBK PRINCIPLES OF ELECTRIC CIRCUITS
10th Edition
ISBN: 9780134880068
Author: Buchla
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 2RP
Express 0.00738 in scientific notation.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Cable A
Cable A is a coaxial cable of constant cross section. The metal
regions are shaded in grey and are made of copper. The solid central
wire has radius a = 5mm, the outer tube inner radius b = 20mm and
thickness t = 5mm. The dielectric spacer is Teflon, of relative
permittivity &r = 2.1 and breakdown strength 350kV/cm. A potential
difference of 1kV is applied across the conductors, with centre
conductor positive and outer conductor earthed.
Before undertaking any COMSOL simulations we'll first perform some theoretical analysis
of Cable A based on the EN2076 lectures, to make sense of the simulations. Calculate the
radial electric field of cable A at radial positions r b. Also calculate the
maximum operating voltage of cable A, assuming a safety margin of ×2, and indicate where
on the cable's cross section dielectric breakdown is most likely to occur.
: For the gravity concrete dam shown in the figure, the following data are available:
The factor of safety against sliding (F.S sliding)=1.2
Unit weight of concrete (Yconc)=24 KN/m³
- Neglect( Wave pressure, silt pressure, ice force and earth quake force)
μ=0.65, (Ywater) = 9.81 KN/m³
Find factor of safety against overturning (F.S overturning)
6m3
80m
Sm
I need help checking if its correct
-E1 + VR1 + VR4 – E2 + VR3 = 0 -------> Loop 1 (a)
R1(I1) + R4(I1 – I2) + R3(I1) = E1 + E2 ------> Loop 1 (b)
R1(I1) + R4(I1) - R4(I2) + R3(I1) = E1 + E2 ------> Loop 1 (c)
(R1 + R3 + R4) (I1) - R4(I2) = E1 + E2 ------> Loop 1 (d)
Now that we have loop 1 equation will procced on finding the equation of I2 current loop. However, a reminder that because we are going in a clockwise direction, it goes against the direction of the current. As such we will get an equation for the matrix that will be:
E2 – VR4 – VR2 + E3 = 0 ------> Loop 2 (a)
-R4(I2 – I1) -R2(I2) = -E2 – E3 ------> Loop 2 (b)
-R4(I2) + R4(I1) - R2(I2) = -E2 – E3 -----> Loop 2 (c)
R4(I1) – (R4 + R2)(I2) = -E2 – E3 -----> Loop 2 (d)
These two equations will be implemented to the matrix formula I = inv(A) * b
R11 R12
(R1 + R3 + R4)
-R4
-R4
R4 + R2
Chapter 1 Solutions
EBK PRINCIPLES OF ELECTRIC CIRCUITS
Ch. 1 - Express 4,750 in scientific notation.Ch. 1 - Express 0.00738 in scientific notation.Ch. 1 - Express 9.12 103 as a regular decimal number.Ch. 1 - Add 3.1 103 and 5.5 104.Ch. 1 - Subtract 3.5 106 from 2.2 105.Ch. 1 - Multiply 3.2 106 and 1.5 103.Ch. 1 - Divide 8 106 by 2 1010.Ch. 1 - Express 36,000,000,000 in engineering notation.Ch. 1 - Express 0.0000000000056 in engineering notation.Ch. 1 - Express using metric prefixes: 1. 56,000 2....
Ch. 1 - Convert 1 mA to microamperes.Ch. 1 - Convert 1,000 mV to millivolts.Ch. 1 - Convert 893 nA to microamperes.Ch. 1 - Convert 10,000 pF to microfarads.Ch. 1 - Convert 0.0022 mF to picofarads.Ch. 1 - Convert 2.2 k to megohms.Ch. 1 - Add 2,873 mA to 10,000 mA; express the sum in...Ch. 1 - How would you show the number 10,000 showing three...Ch. 1 - What is the difference between a measured quantity...Ch. 1 - Round 3.2850 to three significant digits using the...Ch. 1 - Derived units in the SI system use base units in...Ch. 1 - The base electrical unit in the SI system is the...Ch. 1 - The supplementary SI units are for angular...Ch. 1 - The number 3,300 is written as 3.3 103 in both...Ch. 1 - A negative number that is expressed in scientific...Ch. 1 - When you multiply two numbers written in...Ch. 1 - When you divide two numbers written in scientific...Ch. 1 - The metric prefix micro has an equivalent power of...Ch. 1 - To express 56 106 with a metric prefix, the...Ch. 1 - 0.047 F is equal to 47 nFCh. 1 - 0.010 F is equal to 10,000 pF.Ch. 1 - 10,000 kW is equal to 1 MW.Ch. 1 - The number of significant digits in the number...Ch. 1 - To express 10,000 with three significant figures,...Ch. 1 - When you apply the round-to-even rule to round off...Ch. 1 - If a series of measurements are precise, they must...Ch. 1 - The base SI electrical unit is the ampere.Ch. 1 - Which of the following is not an electrical...Ch. 1 - The unit of current is a. volt b. watt c. ampere...Ch. 1 - The number of base units in the SI system is a. 3...Ch. 1 - An mks measurement unit is one that a. can be...Ch. 1 - In the Sl system, the prefix k means to multiply...Ch. 1 - Prob. 6STCh. 1 - The quantity 4.7 103 is the same as a) 470 b)...Ch. 1 - The quantity 56 103 is the same as a. 0.056 b....Ch. 1 - Prob. 9STCh. 1 - Ten milliamperes can be expressed as a. 10 MA b....Ch. 1 - Five thousand volts can be expressed as a. 5,000 V...Ch. 1 - Twenty million ohms can be expressed as a. 20 m b....Ch. 1 - Prob. 13STCh. 1 - When reporting a measured value, it is okay to...Ch. 1 - Express each of the following numbers in...Ch. 1 - Express each fractional number in scientific...Ch. 1 - Express each of the following numbers in...Ch. 1 - Express each of the following numbers in...Ch. 1 - Express each of the following numbers in...Ch. 1 - Express each of the following as a regular decimal...Ch. 1 - Express each of the following as a regular decimal...Ch. 1 - Express each number in regular decimal form: a....Ch. 1 - Add the following numbers: a. (9.2 106) + (3.4 ...Ch. 1 - Prob. 10PCh. 1 - Perform the following multiplications: a. (5 ...Ch. 1 - Prob. 12PCh. 1 - Perform the indicated operations: a. (8 104 + 4 ...Ch. 1 - Starting with 1012, list the powers of ten in...Ch. 1 - Express each of the following numbers in...Ch. 1 - Express each number in engineering notation: a....Ch. 1 - Express each number in engineering notation: a....Ch. 1 - Express each number in engineering notation: a....Ch. 1 - Add the following numbers and express each result...Ch. 1 - Multiply the following numbers and express each...Ch. 1 - Divide the following numbers and express each...Ch. 1 - Express each number in Problem 15 in ohms using a...Ch. 1 - Express each number in Problem 17 in amperes using...Ch. 1 - Express each of the following as a quantity having...Ch. 1 - Express the following using metric prefixes: a. 3 ...Ch. 1 - Express the following using metric prefixes: a....Ch. 1 - Express each quantity by converting the metric...Ch. 1 - Express each quantity in engineering notation: a....Ch. 1 - Perform the indicated conversions: a. 5 mA to...Ch. 1 - Determine the following: a. The number of...Ch. 1 - Add the following quantities: a. 50 mA + 680 A b....Ch. 1 - Do the following operations: a. 10 k (2.2 k + 10...Ch. 1 - How many significant digits are in each of the...Ch. 1 - Round each of the following numbers to three...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
How are relationships between tables expressed in a relational database?
Modern Database Management
The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled ...
Mechanics of Materials (10th Edition)
Why is the study of database technology important?
Database Concepts (8th Edition)
Assume a telephone signal travels through a cable at two-thirds the speed of light. How long does it take the s...
Electric Circuits. (11th Edition)
How is the hydrodynamic entry length defined for flow in a pipe? Is the entry length longer in laminar or turbu...
Fluid Mechanics: Fundamentals and Applications
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 10.2 For each of the following groups of sources, determineif the three sources constitute a balanced source, and if it is,determine if it has a positive or negative phase sequence.(a) va(t) = 169.7cos(377t +15◦) Vvb(t) = 169.7cos(377t −105◦) Vvc(t) = 169.7sin(377t −135◦) V(b) va(t) = 311cos(wt −12◦) Vvb(t) = 311cos(wt +108◦) Vvc(t) = 311cos(wt +228◦) V(c) V1 = 140 −140◦ VV2 = 114 −20◦ VV3 = 124 100◦ Varrow_forwardApply single-phase equivalency to determine the linecurrents in the Y-D network shown in Fig. P10.13. The loadimpedances are Zab = Zbc = Zca = (25+ j5) Warrow_forward10.8 In the network of Fig. P10.8, Za = Zb = Zc = (25+ j5) W.Determine the line currents.arrow_forward
- Using D flip-flops, design a synchronous counter. The counter counts in the sequence 1,3,5,7, 1,7,5,3,1,3,5,7,.... when its enable input x is equal to 1; otherwise, the counter count 0. Present state Next state x=0 Next state x=1 Output SO 52 S1 1 S1 54 53 3 52 53 S2 56 51 0 $5 5 54 S4 53 0 55 58 57 7 56 56 55 0 57 S10 59 1 58 58 S7 0 59 S12 S11 7 $10 $10 59 0 $11 $14 $13 5 $12 S12 $11 0 513 $15 SO 3 S14 $14 S13 0 $15 515 SO 0 Explain how to get the table step by step with drawing the state diagram and finding the Karnaugh map.arrow_forwardFor the oscillator resonance circuit shown in Fig. (5), derive the oscillation frequency Feedback and open-loop gains. L₁ 5 mH (a) ell +10 V R₁ ww R3 S C2 HH 1 με 1000 pF 100 pF R₂ 1 με RA H (b) +9 V R4 CA 470 pF C₁ R3 HH 1 με R₁ ww L₁ 000 1.5 mH R₂ ww Hi 1 μF L2 m 10 mHarrow_forwardExpert handwritten solution onlyarrow_forward
- B. For the oscillator circuit shown in frequency, feedback and open-loop gains. +10 V name the circuit, derive and find the oscillation P.Av +9 V -000 4₁ 5 mH w R₁ C₂ HH 1 με w 100 pF R₂ T R CA www. 470 pF w ww www 1000 pF HH 1μF C₁ HH 1μF Ra ww HI 4₁ 000 1.5 mH H 4 AF 000 10 mHarrow_forwardI want to check if the current that I have from using the mesh analysis is correct? I1 = 0.214mA I2 = -0.429mAarrow_forwardI want to find the current by using mesh analysis pleasearrow_forward
- I want to find the current by using mesh analysis pleasearrow_forwardR₁ W +10 V R3 +9 V C₂ R₁ CA C₁ 470 pF HH 1000 pF HH 1 με C4 1 μF 1 uF C₁ R₂ R4 100 pF Find Open-loop Jain L₁ 5 mH (a) Av=S,B={" H R₁₂ ✓ ww (b) R₁ L₁ 000 1.5 mH R₂ H 1 uF 12 10 mHarrow_forwardA) Calculate the efficiency of the test transformer at the resistive loads (X-25%, 50%, 75%, 100%, 125% full load). B) From part (A) draw the plot (efficiency Vs power output) of the transformer. C) Discuss the plot of part (B).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
AQA GCSE SLR9 Introduction to subroutines; Author: Craig'n'Dave;https://www.youtube.com/watch?v=ADl6mYc7Uk4;License: Standard YouTube License, CC-BY