Fundamentals of Applied Electromagnetics (7th Edition)
7th Edition
ISBN: 9780133356984
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 2P
For the pressure wave described in Example 1-1, plot the following:
- (a) p(x, t) versus x at t = 0
- (b) p(x, t) versus t at x = 0
Be sure to use appropriate scales for x and t so that each of your plots covers at least two cycles.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need an expert mathematical solution.
The E-field pattern of an antenna. independent of , varies as follows:
0° ≤ 0≤ 45°
E = 0
45°
{1
90°
90° < 0 ≤ 180°
(a) What is the directivity of this antenna?
(b) What is the radiation resistance of the antenna at 200 m from it if the field is equal
to 10 V/m (rms) for Ø
=
0° at that distance and the terminal current is 5 A (rms)?
I need an expert mathematical solution.
The normalized far-zone field pattern of an antenna is given by
E =
{®
(sin
cos)/
0
Find the directivity using
0 ≤ 0 ≤ π and 0≤ 0≤ π/2.
3m2sds2,
elsewhere
I need an expert mathematical solution.
The radiation intensity of an aperture antenna, mounted on an infinite ground plane
with perpendicular to the aperture. is rotationally symmetric (not a function of 4),
and it is given by
sin (7 sin 0)
U
π sin
Find the approximate directivity (dimensionless and in dB) using
Chapter 1 Solutions
Fundamentals of Applied Electromagnetics (7th Edition)
Ch. 1.3 - Prob. 1CQCh. 1.3 - What is Coulombs law? State its properties.Ch. 1.3 - What are the two important properties of electric...Ch. 1.3 - What do the electrical permittivity and magnetic...Ch. 1.3 - What are the three branches and associated...Ch. 1.4 - How can you tell if a wave is traveling in the...Ch. 1.4 - Prob. 7CQCh. 1.4 - Why does a negative value of 0 signify a phase...Ch. 1.4 - Consider the red wave shown in Fig. E1.1. What is...Ch. 1.4 - The wave shown in red in Fig. E1.2 is given by...
Ch. 1.4 - The electric field of a traveling electromagnetic...Ch. 1.4 - Prob. 4ECh. 1.4 - The red wave shown in Fig. E1.5 is given by...Ch. 1.4 - An electromagnetic wave is propagating in the z...Ch. 1.5 - What are the three fundamental properties of EM...Ch. 1.5 - What is the range of frequencies covered by the...Ch. 1.5 - Prob. 11CQCh. 1.6 - Express the following complex functions in polar...Ch. 1.6 - Show that 2j=(1+j). (See EM.)Ch. 1.7 - Prob. 12CQCh. 1.7 - How is the phasor technique used when the forcing...Ch. 1.7 - A series RL circuit is connected to a voltage...Ch. 1.7 - A phasor voltage is given by V=j5V. Find (t).Ch. 1 - A 2 kHz sound wave traveling in the x direction in...Ch. 1 - For the pressure wave described in Example 1-1,...Ch. 1 - A harmonic wave traveling along a string is...Ch. 1 - A wave traveling along a string is given by...Ch. 1 - Two waves, y1(t) and y2(t), have identical...Ch. 1 - The height of an ocean wave is described by the...Ch. 1 - A wave traveling along a string in the +x...Ch. 1 - Two waves on a string are given by the following...Ch. 1 - Give expressions for y(x, t) for a sinusoidal wave...Ch. 1 - An oscillator that generates a sinusoidal wave on...Ch. 1 - Prob. 11PCh. 1 - Given two waves characterized by...Ch. 1 - The voltage of an electromagnetic wave traveling...Ch. 1 - A certain electromagnetic wave traveling in...Ch. 1 - Prob. 15PCh. 1 - Prob. 16PCh. 1 - Complex numbers z1 and z2 are given z1=3j2z2=4+j3...Ch. 1 - Complex numbers z1 and z2 are given by...Ch. 1 - If z=2+j4, determine the following quantities in...Ch. 1 - Find complex numbers t=z1+z2 and s=z1z2, both in...Ch. 1 - Complex numbers z1 and z2 are given by...Ch. 1 - If z=3j5, find the value of ln(z).Ch. 1 - If z = 3 j4. find the value of ez.Ch. 1 - Prob. 24PCh. 1 - A voltage source given by s(t)=25cos(2103t30)(V)...Ch. 1 - Find the phasors of the following time functions:...Ch. 1 - Find the instantaneous time sinusoidal functions...Ch. 1 - A series RLC circuit is connected to a generator...Ch. 1 - The voltage source of the circuit shown in Fig....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Waveforms v1(t) and v2(t) are given by:v1(t) = −4 sin(6π ×10^4t +30◦) V,v2(t) = 2cos(6π ×10^4t −30◦) V.Does v2(t) lead or lag v1(t), and by what phase angle?arrow_forward7.1 Express the current waveform i(t) = -0.2 cos(6 × 10°1 +60°) mA in standard cosine form and then determine the following: (a) Its amplitude, frequency, and phase angle. (b) i(t) at t=0.1 ns.arrow_forward3. Consider the RC circuit with a constant voltage source shown in the diagram below. The values of the resistor, capacitor, and input voltage are R = 50, C = 10 µF, and V = 6V, respectively. Assume that there is initially no charge on the capacitor before the switch is closed. Vo ↑i(t) R w C When the switch closes at time t = 0, the current begins to flow as a function of time according to the equation i(t) = ioencarrow_forward
- Q2. a) A three-phase 415 V, 4-pole, 50 Hz, A-connected induction motor was tested. The obtained results are: (i) (ii) No load test 50 Hz: Blocked rotor test, 10 Hz: DC test: Vnl=415 V, Pnl=1200 W, In=11 A Vbr 10 V, Pbr=1500 W, Ibr=91 A VDC 3 V, IDC=107 A Draw the per-phase equivalent electrical circuit of the motor Draw the circuits for no-load and block-rotor tests and indicate the slip for each of the tests. (iii) Identify the motor parameters (iv) Calculate the motor's starting torque at the rated voltage.arrow_forward4. Consider the RC circuit with a sinusoid voltage source shown in the diagram below. The values of the resistor, capacitor, input voltage amplitude and frequency are R-20012, C-5pF", Vo-10V, and w=500 rad/s, respectively. Assume that the circuit has reached steady state. Vрейте 2 The input voltage can be described using the complex sinusoid function V(t)-Vo and the physical voltage is obtained by taking the real part of V(t). The voltage drop across the capacitor is given by a sinusoid with same the frequency was the input voltage, but a different magnitude and different phase. In complex form, the capacitor's voltage is given by Vc(t)=1+jwRC For the following questions, use the template file Assignment TemplateQ2.m as the starting point for your MATLAB code. (a) (6 marks) Use MATLAB to make a graph that shows the real part of the input voltage source ReV(t)] and the real part of the voltage drop across the capacitor Re[Ve(t)] as a function of time. Choose the time scale so that two…arrow_forwardConsider the microgrid given in figure 8-56. The positive sequence impedance of the transmission Lines is given in -line diagram (figure 8.5%). The system data are as follows: the one PV generating Station: 2MW, 460V. AC, positive, negative and zero Sequence impedance of each line is equal to 10%. The generator negativ Sequence impedance is equal to the positive Sequence, and the Zero Sequence impedance is equal to half (½) of positiv Sequence impedance. Transformers positive sequence impedance is equal to the negative sequence and equal to the zero sequence impedance Station DC/AC CB Acpu bus CB www S+js 5 1+jlo M 2 T2 SB CB A Jus -3+16 local utilityarrow_forward
- a) The current drawn by a single-phase converter is represented by the waveform in the figure below. Use Fourier series analysis to determine an expression for obtaining the rms values of the fundamental and the harmonics of the source current. Hence, express the rms value of the fundamental as well as the first three harmonics of the waveform. i(t) Id - Id π 元 b) Fig. Input current waveform of a single phase bridge rectifier A sinusoidal voltage with a peak value of 300 V is applied to the converter in (a) drawing a square-wave current with a peak value of 15 A. Assuming that the zero crossing of the current waveform is 45° behind that of the input voltage waveform, calculate: (i) the average power drawn by the converter, (ii) the form factor (FF) and ripple factor (RF) (iii) the total harmonic distortion (THD%) of the input current.arrow_forwardTransformer 600 V Transformer L₁ L₂ L3 4 (a) 600 V L₁ L₂ L3 L₁ (b) Figure 3.arrow_forward(2 marks) Using Kirchoff's voltage law: V(t) = VR(t) + Vc(t), show that the voltage drop across the resistor is given by the equation VR(t) jwRC 1+jwRC Voearrow_forward
- A ferrite ETD44 core type material is to be used in the converter design. If Bmax = 0.52T, and 350 turns of 1.5x10³cm² copper wire is to be wound around the core material to allow a flow of 5A maximum current, compute for the (a) inductor resistance, and the (b) inductance.arrow_forwardDon't use ai to answer I will report you answerarrow_forwardPlease show the solution and answers each. Thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
What Is a Plane Wave? — Lesson 2; Author: EMViso;https://www.youtube.com/watch?v=ES2WFevGM0g;License: Standard Youtube License