
Enhanced Discovering Computers 2017 (Shelly Cashman Series) (MindTap Course List)
1st Edition
ISBN: 9781305657458
Author: Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Expert Solution & Answer
Chapter 1, Problem 21SG
Explanation of Solution
Internet:
- Internet is an interconnection of smaller networks around the world that establish a communication among computers that belong to the same protocols.
- It uses three ways to connect home computers to the network such as phone modem, a digital subscriber line, and cable modem...
Explanation of Solution
Reason of people using the Internet:
People use the Internet for the following uses are,
VoIP:
- Voice over Internet Protocol (VoIP) is a software and hardware that enables people to use the Internet.
- Because, Internet is a transmission medium for telephone calls by sending voice data in packets.
- It sends the packets using Internet Protocol (IP) rather than public switched telephone network (PSTN) traditional circuit.
E-mail:
- E-mail (Electronic mail) is the computerized messages that can be send from one user to more than one recipient through a network.
- Most e-mail users receive unwanted email advertising called spam. This e-mail spam is also called as Unsolicited Bulk Email (UBE) or Unsolicited Commercial Email (UCE) or junk mail...
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
make corrections of this program based on the errors shown. this is CIS 227 .
Create 6 users: Don, Liz, Shamir, Jose, Kate, and Sal.
Create 2 groups: marketing and research.
Add Shamir, Jose, and Kate to the marketing group.
Add Don, Liz, and Sal to the research group.
Create a shared directory for each group.
Create two files to put into each directory:
spreadsheetJanuary.txt
meetingNotes.txt
Assign access permissions to the directories:
Groups should have Read+Write access
Leave owner permissions as they are
“Everyone else” should not have any access
Submit for grade:
Screenshot of /etc/passwd contents showing your new users
Screenshot of /etc/group contents showing new groups with their members
Screenshot of shared directories you created with files and permissions
⚫ your circuit diagrams for your basic bricks, such as AND, OR, XOR gates and 1 bit multiplexers,
⚫ your circuit diagrams for your extended full adder, designed in Section 1 and
⚫ your circuit diagrams for your 8-bit arithmetical-logical unit, designed in Section 2.
1 An Extended Full Adder
In this Section, we are going to design an extended full adder circuit (EFA). That EFA takes 6 one bit inputs: aj, bj,
Cin, Tin, t₁ and to. Depending on the four possible combinations of values on t₁ and to, the EFA produces 3 one bit
outputs: sj, Cout and rout.
The EFA can be specified in principle by a truth table with 26 = 64 entries and 3 outputs. However, as the EFA
ignores certain inputs in certain cases, it is easier to work with the following overview specification, depending only
on t₁ and to in the first place:
t₁ to Description
00
Output Relationship
Ignored
Inputs
Addition Mode
2 Coutsjaj + bj + Cin, Tout= 0
Tin
0 1
Shift Left Mode
Sj = Cin,
Cout=bj, rout = 0
rin, aj
10
1 1
Shift Right…
Chapter 1 Solutions
Enhanced Discovering Computers 2017 (Shelly Cashman Series) (MindTap Course List)
Ch. 1 - Prob. 1SGCh. 1 - Prob. 2SGCh. 1 - Prob. 3SGCh. 1 - Prob. 4SGCh. 1 - Prob. 5SGCh. 1 - Prob. 6SGCh. 1 - Prob. 7SGCh. 1 - Prob. 8SGCh. 1 - Prob. 9SGCh. 1 - Prob. 10SG
Ch. 1 - Prob. 11SGCh. 1 - Prob. 12SGCh. 1 - Prob. 13SGCh. 1 - Prob. 14SGCh. 1 - Prob. 15SGCh. 1 - Prob. 16SGCh. 1 - Prob. 17SGCh. 1 - Prob. 18SGCh. 1 - Prob. 19SGCh. 1 - Prob. 20SGCh. 1 - Prob. 21SGCh. 1 - Prob. 22SGCh. 1 - Prob. 23SGCh. 1 - Prob. 24SGCh. 1 - Prob. 25SGCh. 1 - Prob. 26SGCh. 1 - Prob. 27SGCh. 1 - Prob. 28SGCh. 1 - Prob. 29SGCh. 1 - Prob. 30SGCh. 1 - Prob. 31SGCh. 1 - Prob. 32SGCh. 1 - Prob. 33SGCh. 1 - Prob. 34SGCh. 1 - Prob. 35SGCh. 1 - Prob. 36SGCh. 1 - Prob. 37SGCh. 1 - Prob. 38SGCh. 1 - Prob. 39SGCh. 1 - Prob. 40SGCh. 1 - Prob. 41SGCh. 1 - Prob. 42SGCh. 1 - Prob. 43SGCh. 1 - Prob. 44SGCh. 1 - Prob. 45SGCh. 1 - Prob. 46SGCh. 1 - Electronic components in computers process data...Ch. 1 - Prob. 2TFCh. 1 - Prob. 3TFCh. 1 - Prob. 4TFCh. 1 - Prob. 5TFCh. 1 - Prob. 6TFCh. 1 - Prob. 7TFCh. 1 - Prob. 8TFCh. 1 - Prob. 9TFCh. 1 - Prob. 10TFCh. 1 - Operating systems are a widely recognized example...Ch. 1 - Prob. 12TFCh. 1 - Prob. 1MCCh. 1 - Prob. 2MCCh. 1 - Prob. 3MCCh. 1 - Prob. 4MCCh. 1 - Prob. 5MCCh. 1 - Prob. 6MCCh. 1 - Prob. 7MCCh. 1 - Prob. 8MCCh. 1 - Prob. 1MCh. 1 - Prob. 2MCh. 1 - Prob. 3MCh. 1 - Prob. 4MCh. 1 - Prob. 5MCh. 1 - Prob. 6MCh. 1 - Prob. 7MCh. 1 - fileCh. 1 - Prob. 9MCh. 1 - Prob. 10MCh. 1 - Prob. 2CTCh. 1 - Prob. 3CTCh. 1 - Prob. 4CTCh. 1 - Prob. 5CTCh. 1 - Prob. 6CTCh. 1 - Prob. 7CTCh. 1 - Prob. 8CTCh. 1 - Prob. 9CTCh. 1 - Prob. 10CTCh. 1 - Prob. 11CTCh. 1 - Prob. 12CTCh. 1 - Prob. 13CTCh. 1 - Prob. 14CTCh. 1 - Prob. 15CTCh. 1 - Prob. 16CTCh. 1 - Prob. 17CTCh. 1 - Prob. 18CTCh. 1 - Prob. 19CTCh. 1 - Prob. 20CTCh. 1 - Prob. 21CTCh. 1 - Prob. 22CTCh. 1 - What are some popular programming languages?Ch. 1 - Prob. 24CTCh. 1 - Prob. 25CTCh. 1 - Prob. 26CTCh. 1 - Prob. 27CTCh. 1 - Prob. 1PSCh. 1 - Prob. 2PSCh. 1 - Prob. 3PSCh. 1 - Prob. 4PSCh. 1 - Prob. 5PSCh. 1 - Prob. 6PSCh. 1 - Prob. 7PSCh. 1 - Prob. 8PSCh. 1 - Prob. 9PSCh. 1 - Prob. 10PSCh. 1 - Prob. 11PSCh. 1 - Prob. 1.1ECh. 1 - Prob. 1.2ECh. 1 - Prob. 1.3ECh. 1 - Prob. 2.1ECh. 1 - Prob. 3.1ECh. 1 - Prob. 3.2ECh. 1 - Prob. 3.3ECh. 1 - Prob. 4.1ECh. 1 - Prob. 4.2ECh. 1 - Prob. 4.3ECh. 1 - Prob. 5.1ECh. 1 - Prob. 5.2ECh. 1 - Prob. 5.3ECh. 1 - Prob. 1IRCh. 1 - Prob. 2IRCh. 1 - Prob. 3IRCh. 1 - Prob. 4IRCh. 1 - Prob. 5IRCh. 1 - Prob. 1CTQCh. 1 - Prob. 2CTQCh. 1 - Prob. 3CTQCh. 1 - Prob. 4CTQ
Knowledge Booster
Similar questions
- Show the correct stereochemistry when needed!! mechanism: mechanism: Show the correct stereochemistry when needed!! Br NaOPh diethyl ether substitutionarrow_forwardIn javaarrow_forwardKeanPerson #keanld:int #keanEmail:String #firstName:String #lastName: String KeanAlumni -yearOfGraduation: int - employmentStatus: String + KeanPerson() + KeanPerson(keanld: int, keanEmail: String, firstName: String, lastName: String) + getKeanld(): int + getKeanEmail(): String +getFirstName(): String + getLastName(): String + setFirstName(firstName: String): void + setLastName(lastName: String): void +toString(): String +getParkingRate(): double + KeanAlumni() + KeanAlumni(keanld: int, keanEmail: String, firstName: String, lastName: String, yearOfGraduation: int, employmentStatus: String) +getYearOfGraduation(): int + setYearOfGraduation(yearOfGraduation: int): void +toString(): String +getParkingRate(): double In this question, write Java code to Create and Test the superclass: Abstract KeanPerson and a subclass of the KeanPerson: KeanAlumni. Task 1: Implement Abstract Class KeanPerson using UML (10 points) • Four data fields • Two constructors (1 default and 1 constructor with all…arrow_forward
- Plz correct answer by best experts...??arrow_forwardQ3) using the following image matrix a- b- 12345 6 7 8 9 10 11 12 13 14 15 1617181920 21 22 23 24 25 Using direct chaotic one dimension method to convert the plain text to stego text (hello ahmed)? Using direct chaotic two-dimension method to convert the plain text to stego text?arrow_forward: The Multithreaded Cook In this lab, we'll practice multithreading. Using Semaphores for synchronization, implement a multithreaded cook that performs the following recipe, with each task being contained in a single Thread: 1. Task 1: Cut onions. a. Waits for none. b. Signals Task 4 2. Task 2: Mince meat. a. Waits for none b. Signals Task 4 3. Task 3: Slice aubergines. a. Waits for none b. Signals Task 6 4. Task 4: Make sauce. a. Waits for Task 1, and 2 b. Signals Task 6 5. Task 5: Finished Bechamel. a. Waits for none b. Signals Task 7 6. Task 6: Layout the layers. a. Waits for Task 3, and 4 b. Signals Task 7 7. Task 7: Put Bechamel and Cheese. a. Waits for Task 5, and 6 b. Signals Task 9 8. Task 8: Turn on oven. a. Waits for none b. Signals Task 9 9. Task 9: Cook. a. Waits for Task 7, and 8 b. Signals none At the start of each task (once all Semaphores have been acquired), print out a string of the task you are starting, sleep for 2-11 seconds, then print out a string saying that you…arrow_forward
- Programming Problems 9.28 Assume that a system has a 32-bit virtual address with a 4-KB page size. Write a C program that is passed a virtual address (in decimal) on the command line and have it output the page number and offset for the given address. As an example, your program would run as follows: ./addresses 19986 Your program would output: The address 19986 contains: page number = 4 offset = 3602 Writing this program will require using the appropriate data type to store 32 bits. We encourage you to use unsigned data types as well. Programming Projects Contiguous Memory Allocation In Section 9.2, we presented different algorithms for contiguous memory allo- cation. This project will involve managing a contiguous region of memory of size MAX where addresses may range from 0 ... MAX - 1. Your program must respond to four different requests: 1. Request for a contiguous block of memory 2. Release of a contiguous block of memory 3. Compact unused holes of memory into one single block 4.…arrow_forwardusing r languagearrow_forwardProgramming Problems 9.28 Assume that a system has a 32-bit virtual address with a 4-KB page size. Write a C program that is passed a virtual address (in decimal) on the command line and have it output the page number and offset for the given address. As an example, your program would run as follows: ./addresses 19986 Your program would output: The address 19986 contains: page number = 4 offset = 3602 Writing this program will require using the appropriate data type to store 32 bits. We encourage you to use unsigned data types as well. Programming Projects Contiguous Memory Allocation In Section 9.2, we presented different algorithms for contiguous memory allo- cation. This project will involve managing a contiguous region of memory of size MAX where addresses may range from 0 ... MAX - 1. Your program must respond to four different requests: 1. Request for a contiguous block of memory 2. Release of a contiguous block of memory 3. Compact unused holes of memory into one single block 4.…arrow_forward
- using r languagearrow_forwardWrite a function to compute a Monte Carlo estimate of the Beta(3, 3) cdf, and use the function to estimate F(x) for x = 0.1,0.2,...,0.9. Compare the estimates with the values returned by the pbeta function in R.arrow_forwardWrite a function to compute a Monte Carlo estimate of the Gamma(r = 3, λ = 2) cdf, and use the function to estimate F(x) for x = 0.2, 0.4, . . . , 2.0. Compare the estimates with the values returned by the pgamma function in R.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Enhanced Discovering Computers 2017 (Shelly Cashm...Computer ScienceISBN:9781305657458Author:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. CampbellPublisher:Cengage LearningFundamentals of Information SystemsComputer ScienceISBN:9781305082168Author:Ralph Stair, George ReynoldsPublisher:Cengage Learning

Enhanced Discovering Computers 2017 (Shelly Cashm...
Computer Science
ISBN:9781305657458
Author:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher:Cengage Learning

Fundamentals of Information Systems
Computer Science
ISBN:9781305082168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning