
Concept explainers
Anton van Leeuwenhoek made an important contribution to the development of the cell theory. How?
a. He articulated that all organisms are made of cells.
b. He articulated that all cells come from preexisting cells.
c. He invented the first microscope and saw the first cell.
d. He invented more powerful microscopes and was the first to describe the diversity of cells.

Introduction:
The fundamental theory underlying the structural unit of life is known as cell theory. The cell theory is able to explain the structural unit, which is common in all the living organisms. The microscope development led to decoding the mystery about the fundamental unit and it confirmed that all the organisms are made up of cells. Anton van Leeuwenhoek was the first scientist to observe and describe the diversity of cells, such as blood cells, microscopic nematodes, and sperm cells.
Answer to Problem 1TYK
Correct answer:
Anton van Leeuwenhoek invented more powerful microscope and was the first to describe the diversity of cells. The efficient use of advanced magnification techniques, Anton van Leeuwenhoek observed the different type of cells.
Explanation of Solution
Explanation/Justification for the correct answer:
Option (d) is given as invention of the powerful microscope helped in describing the diversity of the cells. Anton van Leeuwenhoek was the first scientist who observes and describes the diversity of cells, such as blood cells, microscopic nematodes, and sperm cells. The magnifying power of microscopes was modified which resulted in the development of more powerful microscopes. Anton van Leeuwenhoek modified the magnifying power of microscopes, resulting in the invention of more powerful microscopes with magnification up to 300×. He was the first to observe the single-celled organisms and called them “animalcules”. Hence, Option (d) is correct.
Explanation for incorrect answers:
Option (a) is given as organisms made up of cells as an articulation. The claim was not just given by this scientist, rather a collective effort of scientists revealed that cells are the basic unit of all organism. So, it is a wrong answer.
Option (b) is given as the articulation that all cells have come from preexisting cells. This hypothesis was proposed by German scientist Rudolph Virchow. So, it is a wrong answer.
Option (c) is given as he invented the first microscope and observed by first cell Anton Van Leeuwenhoek. The first cell was observed by scientist Robert Hooke. So, it is a wrong answer.
In 1839, Schleiden & Schwann formally articulated that all organisms are composed of cells. A German scientist named Rudolph Virchow proposed that all cells arise from cells already in existence. Robert Hooke invented a microscope to examine the structure of cork from an oak tree. Leeuwenhoek further develop more powerful microscopes with magnification up to 300 ×; “×” refers to magnification power. Hence, the options (a), (b) and (c) are incorrect.
Anton van Leeuwenhoek made an important contribution to the development of the cell theory by inventing more powerful microscopes and was the first to describe the diversity of cells.
Want to see more full solutions like this?
Chapter 1 Solutions
Biological Science
- With reference to their absorption spectra of the oxy haemoglobin intact line) and deoxyhemoglobin (broken line) shown in Figure 2 below, how would you best explain the reason why there are differences in the major peaks of the spectra? Figure 2. SPECTRA OF OXYGENATED AND DEOXYGENATED HAEMOGLOBIN OBTAINED WITH THE RECORDING SPECTROPHOTOMETER 1.4 Abs < 0.8 06 0.4 400 420 440 460 480 500 520 540 560 580 600 nm 1. The difference in the spectra is due to a pH change in the deoxy-haemoglobin due to uptake of CO2- 2. There is more oxygen-carrying plasma in the oxy-haemoglobin sample. 3. The change in Mr due to oxygen binding causes the oxy haemoglobin to have a higher absorbance peak. 4. Oxy-haemoglobin is contaminated by carbaminohemoglobin, and therefore has a higher absorbance peak 5. Oxy-haemoglobin absorbs more light of blue wavelengths and less of red wavelengths than deoxy-haemoglobinarrow_forwardWith reference to their absorption spectra of the oxy haemoglobin intact line) and deoxyhemoglobin (broken line) shown in Figure 2 below, how would you best explain the reason why there are differences in the major peaks of the spectra? Figure 2. SPECTRA OF OXYGENATED AND DEOXYGENATED HAEMOGLOBIN OBTAINED WITH THE RECORDING SPECTROPHOTOMETER 1.4 Abs < 0.8 06 0.4 400 420 440 460 480 500 520 540 560 580 600 nm 1. The difference in the spectra is due to a pH change in the deoxy-haemoglobin due to uptake of CO2- 2. There is more oxygen-carrying plasma in the oxy-haemoglobin sample. 3. The change in Mr due to oxygen binding causes the oxy haemoglobin to have a higher absorbance peak. 4. Oxy-haemoglobin is contaminated by carbaminohemoglobin, and therefore has a higher absorbance peak 5. Oxy-haemoglobin absorbs more light of blue wavelengths and less of red wavelengths than deoxy-haemoglobinarrow_forwardWhich ONE of the following is FALSE regarding haemoglobin? It has two alpha subunits and two beta subunits. The subunits are joined by disulphide bonds. Each subunit covalently binds a haem group. Conformational change in one subunit can be transmitted to another. There are many variant ("mutant") forms of haemoglobin that are not harmful.arrow_forward
- Which ONE of the following is FALSE regarding haemoglobin? It has two alpha subunits and two beta subunits. The subunits are joined by disulphide bonds. Each subunit covalently binds a haem group. Conformational change in one subunit can be transmitted to another. There are many variant ("mutant") forms of haemoglobin that are not harmful.arrow_forwardDuring a routine medical check up of a healthy man it was found that his haematocrit value was highly unusual – value of 60%. What one of the options below is the most likely reason? He will have a diet high in iron. He is likely to be suffering from anaemia. He lives at high altitude. He has recently recovered from an accident where he lost a lot of blood. He has a very large body size.arrow_forwardExplain what age of culture is most likely to produce an endospore?arrow_forward
- Explain why hot temperatures greater than 45 degrees celsius would not initiate the sporulation process in endospores?arrow_forwardEndospore stain: Consider tube 2 of the 7-day bacillus culture. After is was heated, it was incubated for 24 hours then refrigerated. Do you think the cloudiness in this tube is due mostly to vegetative cells or to endospores? Explain your reasoningarrow_forwardReactunts C6H12O6 (Glucose) + 2NAD+ + 2ADP 2 Pyruvic acid + 2NADH + 2ATP a. Which of the above are the reactants? b. Which of the above are the products? c. Which reactant is the electron donor? GHz 06 (glucose) d. Which reactant is the electron acceptor? NAD e. Which of the products have been reduced? NADH f. Which of the products have been oxidized? g. Which process was used to produce the ATP? h. Where was the energy initially in this chemical reaction and where is it now that it is finished? i. Where was the carbon initially in this chemical reaction and where is it now that it is finished? j. Where were the electrons initially in this chemical reaction and where is it now that it is finished? 3arrow_forward
- There is ________ the concept of global warming. Very strong evidence to support Some strong evidence to support Evidence both supporting and against Evidence againstarrow_forwardHow many types of reactions can an enzyme perform?arrow_forwardYour goal is to produce black seeds resistant to mold. So you make the same cross again (between a homozygous black seeded, mold susceptible parent and a homozygous white seeded and mold resistant parent), and, again, advance progeny by SSD to create 100 F10 generation plants. Based on the information you obtained from your first crossing experiment (Question #4), how many F10 plants would you expect to have black seeds and be resistant to mold? Assume that a toxin produced by the mold fungus has been isolated. Only mold resistant seeds will germinate in the presence of the toxin. Could you use this toxin screening procedure to have segregation distortion work in your favor in the F2 generation? Explain your answer. Info from Question 4 a. P Locus (Seed Color): Hypothesis: The null hypothesis (H₀) is that seed color is controlled by alleles at a single locus. Observed Data: Total white seeds: 45 (resistant plants) + 6 (susceptible plants) = 51 Total black seeds: 7 (resistant…arrow_forward
- Human Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage LearningComprehensive Medical Assisting: Administrative a...NursingISBN:9781305964792Author:Wilburta Q. Lindh, Carol D. Tamparo, Barbara M. Dahl, Julie Morris, Cindy CorreaPublisher:Cengage Learning




