Concept explainers
The names of the largest contractors along with their rankings reported by ENR in the categories of Heavy and highway, non-residential building, and multiunit housing. Find whether these contractors are the largest in the previous year.
Explanation of Solution
Refer to the Engineering News Record 2019.
Show the names of the largest contractors along with their rankings reported by ENR as shown in Table 1.
Contractors Name
| Rank as per ENR 2019 | Rank as per ENR 2018 |
Bechtel, Reston, Va. | 1 | 1 |
Fluor Corp., Irving, Texas | 2 | 2 |
Turner Corp., New York, N.Y. | 3 | 3 |
AECOM, Los Angeles, Calif. | 4 | 4 |
The Whiting-Turner Contracting Co., Baltimore, Md. | 5 | 8 |
Refer Table 1.
The table shows the list of the largest contractors as per Engineering News Record 2019.
Compare the rank of these contractors in the year 2019 and 2018.
The top 4 contractors maintained their position in both 2018 and 2019, whereas the contactor The Whiting-Turner Contracting Co, has shown significant growth and attained 5th rank in 2019 when compared to 8th rank in 2018.
Want to see more full solutions like this?
Chapter 1 Solutions
Construction Management
- No chatgpt pls will upvotearrow_forwardCalculate steel quantity in kg for CF3, CF4,CF5, CF6 from foundation layout and other footing? The depth of CF3, CF4,CF5 and CF6 are 50, 55,55 , 60 cm in order. Both long and short bar for CF3, CF4,CF5 and CF6 are Y14@15c/c T&B, Y14@15c/c T&B, Y14@15c/c T&B, Y14@12c/c T&B in order. 2. Calculate quantity of flexible sheet from foundation layout?arrow_forward(A): As shown in the rig. A hydraulic jump was occurred in a rectangular channel,the velocity of flow before and after the jump equal to 8 m/s and 2 m/s respectively. Find: The energy dissipation for the jump (AE) and what is the name of this jump. V1-8 m/s -V2-2 m/sarrow_forward
- A cylinder of fluid has dimensions of 0.2 ft in diameter by 0.45 ft high. If the weight of thefluid is 0.55 lb , determine the specific gravity and density of fluid.arrow_forwardA cylinder of fluid has dimensions of 0.2 ft in diameter by 0.45 ft high. If the weight of thefluid is 0.55 lb , determine the specific gravity and density of fluid.arrow_forwardA cylinder of fluid has dimensions of 0.2 ft in diameter by 0.45 ft high. If the weight of thefluid is 0.55 lb , determine the specific gravity and density of fluid.arrow_forward
- Draw the shear and bending moment diagrams and find the immediate deflection for a simply supported beam of length 20 ft. with the same live load at ½ span and cross-section as the previous problem. Assume a reasonable Modulus of Elasticity and concrete self-weight. Hint: You may look online for typical concrete self-weights and compressive strengths. You may also use the ACI 318 Code equation for the Modulus of Elasticity shown below, and the supplied Design Aids.arrow_forwardProblem 4. A major transmission pathway of the novel coronavirus disease 2019 (COVID- 19) is through droplets and aerosols produced by violent respiratory events such as sneezes and coughs (Fig. 1). For the purpose of providing public health guidelines, we would like to estimate the amount of time it takes for these droplets to settle from air to the ground. The relevant parameters are the settling time (ts), the initial height of the droplets (H), gravitational acceleration (g), density of the droplets (pa), radius of the droplets (R), as well as dynamic viscosity of the ambient air (Pair). Use dimensional analysis and the Buckingham theorem to answer the following questions: 1. Find the independent dimensionless parameters using the table method. Then, express the settling time as a function of the other relevant parameters. Your solution should match the physical intuition that the settling time scales linearly with the initial height. 2. How would the settling change if the…arrow_forwardQuestion 4 An engineer is assigned to design a 25-stories office building which has a building height of 75 m. Reinforced concrete shear wall system as shown in Figure Q1(a) is adopted to resist the lateral loads. The shear wall is of thickness t = 350 mm and length L = 8.5 m. Use the following data: Young's modulus of concrete E = 28 kN/mm² and the lateral load intensity w = 1.20 kN/m². Assuming the frontal width of the building façade is 15 m is facing the wind force which in turn transmitting the wind force to the shear wall system, estimate the total value of sway A at the roof level. Question 5 For the Shear Wall in Question 4, if the total ultimate gravity load of the building acted on shear wall is 6000 KN, using a partial factor of 1.2 for the wind load, calculate the stress on the extreme right corner of the shear wall at first storey level. (A) 9.46 mm (B) 189.26 mm (C) 14.20 mm (D) 141.95 mm STOREY FLOOR LEV Shear wall Figure Q1(a) (A) 3.228 N/sq mm (B) 14.029 N/sq mm 75 m…arrow_forward
- Question 4 An engineer is assigned to design a 25-stories office building which has a building height of 75 m. Reinforced concrete shear wall system as shown in Figure Q1(a) is adopted to resist the lateral loads. The shear wall is of thickness t = 350 mm and length L = 8.5 m. Use the following data: Young's modulus of concrete E = 28 kN/mm² and the lateral load intensity w = 1.20 kN/m². Assuming the frontal width of the building façade is 15 m is facing the wind force which in turn transmitting the wind force to the shear wall system, estimate the total value of sway A at the roof level. Question 6 If the similar building in Question 4 is designed using rigid frame method is to be designed to ensure the sway is within the allowable limit. If the building width is B, and with the same building height H=75m. Using a rough estimation method, calculate the maximum allowable deflection A at the roof level. (A) 9.46 mm (B) 189.26 mm (C) 14.20 mm 町 141.95 mm 1ST STOREY FLOOR LEV. Shear wall…arrow_forwardWhat are the biggest challenges estimators' face during the quantity takeoff and pricing phases?arrow_forwardQuestion IV (30%): A 22 m thick normally consolidated clay layer has a load of 150 kPa applied to it over a large areal extent. The clay layer is located below a 3.5 m thick granular fill (p= 1.8 Mg/m³). A dense sandy gravel is found below the clay. The groundwater table is located at the top of the clay layer, and the submerged density of the clay soil is 0.95 Mg/m³. Consolidation tests performed on 2.20 cm thick doubly drained samples indicate the time for 50% consolidation completed as t50 = 10.5 min for a load increment close to that of the loaded clay layer. Compute the effective stress in the clay layer at a depth of 16 m below the ground surface 3.5 years after the application of the load.arrow_forward
- Fundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,Residential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage LearningTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
- Architectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning