Concept explainers
Temperature is defined as
A. how hot it is.
B. the level of heat.
C. how cold it is.
D. why it is hot.
The definition of temperature.
Answer to Problem 1RQ
The temperature is defined as the level of heat.The correct option is (b)
Explanation of Solution
The temperature is defined as the degree of hotness or coldness of an object. But according to the question, temperature can also be defined as the level of heat.
Consider an example of a glass filled with boil water and ice cream. Here, ice cream is colder than the glass of boiling water with respect to atmosphere. Temperature is usually measured by thermometer. Thermometers can be classified into three types on the basis of the units of the temperature. They are as follows-
- Celsius thermometer.
- Fahrenheit thermometer.
- Kelvin thermometer.
The Celsius thermometer is used to measure the temperature in degree Celsius.
The Fahrenheit thermometer is used to measure the temperature in degree Fahrenheit.
The Kelvin thermometer is used to measure the temperature in Kelvin.
Conclusion:
Hence, the correct option is (b).
Want to see more full solutions like this?
Chapter 1 Solutions
Bundle: Refrigeration and Air Conditioning Technology, 8th + MindTap HVAC, 4 terms (24 months) Printed Access Card
- I tried this problem but I can't seem to figure out what I am missing here can you please help me?arrow_forwardSolve 4.9 row a USING THE ANALYTICAL METHODarrow_forwardcutting Instructions: Do not copy the drawing. Draw In third-angle orthographic projection, and to scale 1:1, the following views of the hinge: A sectional front view on A-A A top view ⚫ A right view (Show all hidden detail) Show the cutting plane in the top view . Label the sectioned view Note: All views must comply with the SABS 0111 Code of Practice for Engineering Drawing. Galaxy A05s Assessment criteria: ⚫ Sectional front view 026 12 042 66 [30] 11 10arrow_forward
- 1. Plot the moment (M), axial (N), and shear (S) diagrams as functions of z. a) b) F₁ = 1250 N F₁ = 600 N M₁ = 350 000 N mm F2 = 500 N 200 N a = 600 mm b=1000 mm a=750 mm b = 1000 mm d) M₁ = 350 000 N mm F₁ = 600 N F₂ =200 N a = 600 mm b = 1000 mm M₁ 175 000 Nmm F = 900 N a-250 mm b-1000 mm -250 mm. Figure 1: Schematics problem 1.arrow_forwardGiven the following cross-sections (with units in mm): b) t=2 b=25 h=25 t = 1.5 b=20 b=25 t=2 I t = 1.5 a=10 b=15 h-25 b=15 t=3 T h=25 Figure 3: Cross-sections for problem 2. 1. For each of them, calculate the position of the centroid of area with respect to the given coordinate system and report them in the table below. 2. For each of them, calculate the second moments of inertia I... and I, around their respective centroid of area and report them in the table below. Note: use the parallel axes theorem as much as possible to minimize the need to solve integrals. Centroid position x y box Moment of inertia lyy by a) b) c) d) e)arrow_forwardProblem 1: Analyze the canard-wing combination shown in Fig. 1. The canard and wing are made of the same airfoil section and have AR AR, S = 0.25, and = 0.45% 1. Develop an expression for the moment coefficient about the center of gravity in terms of the shown parameters (, and zg) and the three-dimensional aerodynamic characteristics of the used wing/canard (CL C and CM). 2. What is the range of the cg location for this configuration to be statically stable? You may simplify the problem by neglecting the upwash (downwash) effects between the lifting surfaces and the drag contribution to the moment. You may also assume small angle approximation. Figure 1: Canard-Wing Configuration.arrow_forward
- Problem 2: Consider the Boeing 747 jet transport, whose layout is shown in Fig. 2 and has the following characteristics: xoa 0.25, 8 5500/2, b 195.68ft, 27.31ft, AR, 3.57, V = 0.887 Determine the wing and tail contributions to the CM-a curve. You may want to assume CM, reasonable assumptions (e.g., -0.09, 0, -4°. i=0.0°, and i = -2.0°. Make any other 0.9).arrow_forwardZ Fy = 100 N Fx = 100 N F₂ = 500 N a = 500 mm b = 1000 mm Figure 2: Schematics for problem 3. 1. Draw the moment (M), axial (N), and shear (S) diagrams. Please note that this is a 3D problem and you will have moment (M) and shear (S) along two different axes. That means that you will have a total of 5 diagrams.arrow_forwardAn ideal gas with MW of 29 g/mol, cp = 1.044 kJ/kgK and c₁ = 0.745 kJ/kgK contained in a cylinder-piston assembly initially has a pressure of 175 kPa, a temperature of 22°C, and a volume of 0.30 m³. It is heated slowly at constant volume (process 1-2) until the pressure is doubled. It is then expanded slowly at constant pressure (process 2-3) until the volume is doubled. Draw a figure of the system and the PV diagram showing each state and the path each process takes. Determine the total work done by the system and total heat added (J) in the combined process.arrow_forward
- please explain each method used, thank youarrow_forwardDetermine the resultant loadings acting on the cross sections at points D and E of the frame.arrow_forwardA spring of stiffness factor 98 N/m is pulled through 20 cm. Find the restoring force and compute the mass which should be attached so as to stretch in spring by same amount.arrow_forward
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage LearningElectrical Transformers and Rotating MachinesMechanical EngineeringISBN:9781305494817Author:Stephen L. HermanPublisher:Cengage Learning