Sustainable Energy, SI Edition
Sustainable Energy, SI Edition
2nd Edition
ISBN: 9781337672092
Author: DUNLAP, Richard A.
Publisher: Cengage Learning
Question
Book Icon
Chapter 1, Problem 1P

(a)

To determine

Determine the energy associated while dropping the coal from the given height.

(a)

Expert Solution
Check Mark

Answer to Problem 1P

The energy associated while dropping the coal is 980J_.

Explanation of Solution

Given information:

Mass of the coal is m=1kg.

Vertical height is h=100m.

Calculation:

Refer Appendix II, “Physical constants” for gravitational acceleration value in the textbook.

The value of gravitational acceleration is g=9.8m/s2.

Find the potential energy associated due to gravitation using the relation:

E=mgh=(1kg)(9.8m/s2)(100m)=980J

Therefore, the energy associated while dropping the coal is 980J_.

(b)

To determine

Determine the energy associated while burning the coal.

(b)

Expert Solution
Check Mark

Answer to Problem 1P

The energy associated while burning the coal is 3.28×107J_.

Explanation of Solution

Given information:

Mass of the coal is m=1kg.

Calculation:

Let consider the coal contains 100% of carbon.

Refer Equation (1.13) in the textbook.

Combustion of 1 kg of carbon releases energy of E=32.8MJ.

Convert 32.8 MJ into J:

E=32.8MJ×106JMJ=3.28×107J

Therefore, the energy associated while burning the coal is 3.28×107J_.

(c)

To determine

Determine the energy associated while converting the mass of the coal into energy.

(c)

Expert Solution
Check Mark

Answer to Problem 1P

The energy associated while converting the mass of the coal into energy is 9×1016J_.

Explanation of Solution

Given information:

Mass of the coal is m=1kg.

Calculation:

Refer Appendix II, “Physical constants” for speed of light value in the textbook.

The value of speed of light is c=3×108m/s.

Find the energy associated using the relation:

E=mc2=(1kg)(3×108m/s)2=9×1016J

Therefore, the energy associated while converting the mass of the coal into energy is 9×1016J_.

Compare the energy scale level for the three cases as follows:

The mass of energy while converting the mass (9×1016J) has higher order of magnitude compared to the energy forms due to dropping and burning.

The energy due to burning (3.28×107J) is approximately greater than 30, 000 times the energy associated due to gravitation (980J).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The dam presented below is 180 m long (in the direction perpendicular to the plane of the cross-section). For the water elevations given on the drawing: a) Construct the flow net (minimum number of equipotential lines should be 10), b) Calculate the rate of seepage for the entire dam, c) Find the total uplift force on the dam (ignore barriers), and d) Estimate the hydraulic gradient at points A, B, and D. Recommended to use a spreadsheet to include all equations for calculations of potentials.
Using A36 steel select the lightest equal leg single angle member to resist a factored (LRFD) tensile load Pu = 167 kips. The member will be connected through one leg with one line of three 3/4-in Ø bolts spaced at 3 in between centers as shown. The edge distances Leh = Lev = 1.5 in.  Use LRFD Method Use U from Table D3.1, Case 8. See attached (D3.1 Case 8, Shear Strength of Bolts, Table 1-7 Dimensions of Angles).
The system in Fig. consists of 1200 m of 5 cm cast-iron pipe e=0.26mm, two 45° and four 90° elbows, a globe valve, and a sharp exit into a reservoir. If the elevation at point 1 is 400 m, what gage pressure is required at point 1 to deliver 0.005 m3/s of water into the reservoir? U= 10-6m² 1 * sec -, K 45° elbows= 0.2, K 90° flanged = 0.2, K globe valve 10, K Sharp exit=1 G Elevation 500 m 45° Open globe 45° Sharp exit
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning