SUSTAINABLE ENERGY (LL)
SUSTAINABLE ENERGY (LL)
2nd Edition
ISBN: 9780357667224
Author: DUNLAP
Publisher: CENGAGE L
Question
Book Icon
Chapter 1, Problem 1P

(a)

To determine

Determine the energy associated while dropping the coal from the given height.

(a)

Expert Solution
Check Mark

Answer to Problem 1P

The energy associated while dropping the coal is 980J_.

Explanation of Solution

Given information:

Mass of the coal is m=1kg.

Vertical height is h=100m.

Calculation:

Refer Appendix II, “Physical constants” for gravitational acceleration value in the textbook.

The value of gravitational acceleration is g=9.8m/s2.

Find the potential energy associated due to gravitation using the relation:

E=mgh=(1kg)(9.8m/s2)(100m)=980J

Therefore, the energy associated while dropping the coal is 980J_.

(b)

To determine

Determine the energy associated while burning the coal.

(b)

Expert Solution
Check Mark

Answer to Problem 1P

The energy associated while burning the coal is 3.28×107J_.

Explanation of Solution

Given information:

Mass of the coal is m=1kg.

Calculation:

Let consider the coal contains 100% of carbon.

Refer Equation (1.13) in the textbook.

Combustion of 1 kg of carbon releases energy of E=32.8MJ.

Convert 32.8 MJ into J:

E=32.8MJ×106JMJ=3.28×107J

Therefore, the energy associated while burning the coal is 3.28×107J_.

(c)

To determine

Determine the energy associated while converting the mass of the coal into energy.

(c)

Expert Solution
Check Mark

Answer to Problem 1P

The energy associated while converting the mass of the coal into energy is 9×1016J_.

Explanation of Solution

Given information:

Mass of the coal is m=1kg.

Calculation:

Refer Appendix II, “Physical constants” for speed of light value in the textbook.

The value of speed of light is c=3×108m/s.

Find the energy associated using the relation:

E=mc2=(1kg)(3×108m/s)2=9×1016J

Therefore, the energy associated while converting the mass of the coal into energy is 9×1016J_.

Compare the energy scale level for the three cases as follows:

The mass of energy while converting the mass (9×1016J) has higher order of magnitude compared to the energy forms due to dropping and burning.

The energy due to burning (3.28×107J) is approximately greater than 30, 000 times the energy associated due to gravitation (980J).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. Find moments of inertia around horizontal and vertical centroid axes for given 6 cross sections. 1) 30cm 5cm 10cm 20cm 2) 3)
An anchored sheet-pile bulkhead is shown in the figure below. Let L₁ = 2 m. L₂ =6 m. l₁ = 1 m = 17 kN/m². sat -18.86 kN/m², '=32°, and c=27 kN/m². Use the free earth support method. Anchor Sand = 0 Water table L Sand Ysat c' = 0 Clay = 0 1. Determine the theoretical depth of embedment, D. (Enter your answer to three significant figures.) D= m 2. Calculate the anchor force per unit length of the sheet-pile wall. (Enter your answer to three significant figures.) F= kN/m
Calculate the dry mass of activated sludge (✗a) produced in wastewater treatment system where the flow rate is 7,500 m³/day, the BOD concentration in the primary effluent (i.e., the BOD concentration in the wastewater going to the aeration basin) is 75 mg/L, the soluble BOD concentration in the liquid effluent of the secondary clarifier is 10 mg/L, and the system is operating with an SRT of 3 days. Assume true yield is 0.5 g VSS per g BOD and the decay rate (i.e., bч or kd) is equal to 0.1 days 1. Assume the system does not achieve nitrification and that the mass of cell debris, nonbiodegradable VSS, and influent inert TSS is negigible. Express your answer in kg/day and round to the nearest 0.1.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning