Concept explainers
Grocery shopping Many grocery store chains offer customers a card they can scan when they check out and offer discounts to people who do so. To get the card, customers must give information, including a mailing address and e-mail address. The actual purpose is not to reward loyal customers but to gather data. What data do these cards allow stores to gather, and why would they want that data?
What data the stores gather with the card and the reason why the data is gathered.
Answer to Problem 1E
The what in the data gathered by the store includes the list of items purchased by the customer, the frequency of purchase by a particular customer, the date of purchase, the time of purchase, the locality from which the purchase is made, the locality of residence of the customer, and so on.
The why behind the collection of the data is to use the data to improve the business strategies of the store according to the time, place, and locality.
Explanation of Solution
Given info:
Several grocery store chains offer their customers a card to scan during check-out; they are issued once the customers provide some information about themselves, such as mailing address and e-mail address. The customers who accept the card are given discounts, while the data about the customers is gathered by the store.
Justification:
The grocery store chains typically have several stores scattered over the whole country. Once a customer is issued a card, by taking their mailing address and e-mail address, the customer becomes a unique identity. Whenever the card is scanned after purchase, the store automatically gets the whole data regarding the purchase of the customer.
Thus, an answer to what data that is collected includes the list of items purchased by the customer, the frequency of purchase by a particular customer, the date of purchase, the time of purchase, the locality from which the purchase is made, the locality of residence of the customer, and so on.
The stores aim at increasing their business profits. The complete information about each individual’s purchase helps the store to create a customer profile. The store management can decide customers of which age-group and gender buy which type of article. Determining which articles are frequently bought together helps the store management to arrange their goods in such a way that the goods attract the most attention; it also helps to decide which items to put on discount. This data helps the store management to decide on their advertisement policies, as well.
All this information is gathered to address the question why behind the collection of the data; that is, to use the data to improve the business strategies of the store according to the time, place, and locality.
Want to see more full solutions like this?
Chapter 1 Solutions
Intro Stats
Additional Math Textbook Solutions
College Algebra Essentials (5th Edition)
Probability And Statistical Inference (10th Edition)
APPLIED STAT.IN BUS.+ECONOMICS
Precalculus
Introductory Statistics
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
- solve the question based on hw 1, 1.41arrow_forwardT1.4: Let ẞ(G) be the minimum size of a vertex cover, a(G) be the maximum size of an independent set and m(G) = |E(G)|. (i) Prove that if G is triangle free (no induced K3) then m(G) ≤ a(G)B(G). Hints - The neighborhood of a vertex in a triangle free graph must be independent; all edges have at least one end in a vertex cover. (ii) Show that all graphs of order n ≥ 3 and size m> [n2/4] contain a triangle. Hints - you may need to use either elementary calculus or the arithmetic-geometric mean inequality.arrow_forwardWe consider the one-period model studied in class as an example. Namely, we assumethat the current stock price is S0 = 10. At time T, the stock has either moved up toSt = 12 (with probability p = 0.6) or down towards St = 8 (with probability 1−p = 0.4).We consider a call option on this stock with maturity T and strike price K = 10. Theinterest rate on the money market is zero.As in class, we assume that you, as a customer, are willing to buy the call option on100 shares of stock for $120. The investor, who sold you the option, can adopt one of thefollowing strategies: Strategy 1: (seen in class) Buy 50 shares of stock and borrow $380. Strategy 2: Buy 55 shares of stock and borrow $430. Strategy 3: Buy 60 shares of stock and borrow $480. Strategy 4: Buy 40 shares of stock and borrow $280.(a) For each of strategies 2-4, describe the value of the investor’s portfolio at time 0,and at time T for each possible movement of the stock.(b) For each of strategies 2-4, does the investor have…arrow_forward
- Negate the following compound statement using De Morgans's laws.arrow_forwardNegate the following compound statement using De Morgans's laws.arrow_forwardQuestion 6: Negate the following compound statements, using De Morgan's laws. A) If Alberta was under water entirely then there should be no fossil of mammals.arrow_forward
- Negate the following compound statement using De Morgans's laws.arrow_forwardCharacterize (with proof) all connected graphs that contain no even cycles in terms oftheir blocks.arrow_forwardLet G be a connected graph that does not have P4 or C3 as an induced subgraph (i.e.,G is P4, C3 free). Prove that G is a complete bipartite grapharrow_forward
- Prove sufficiency of the condition for a graph to be bipartite that is, prove that if G hasno odd cycles then G is bipartite as follows:Assume that the statement is false and that G is an edge minimal counterexample. That is, Gsatisfies the conditions and is not bipartite but G − e is bipartite for any edge e. (Note thatthis is essentially induction, just using different terminology.) What does minimality say aboutconnectivity of G? Can G − e be disconnected? Explain why if there is an edge between twovertices in the same part of a bipartition of G − e then there is an odd cyclearrow_forwardLet G be a connected graph that does not have P4 or C4 as an induced subgraph (i.e.,G is P4, C4 free). Prove that G has a vertex adjacent to all othersarrow_forwardWe consider a one-period market with the following properties: the current stock priceis S0 = 4. At time T = 1 year, the stock has either moved up to S1 = 8 (with probability0.7) or down towards S1 = 2 (with probability 0.3). We consider a call option on thisstock with maturity T = 1 and strike price K = 5. The interest rate on the money marketis 25% yearly.(a) Find the replicating portfolio (φ, ψ) corresponding to this call option.(b) Find the risk-neutral (no-arbitrage) price of this call option.(c) We now consider a put option with maturity T = 1 and strike price K = 3 onthe same market. Find the risk-neutral price of this put option. Reminder: A putoption gives you the right to sell the stock for the strike price K.1(d) An investor with initial capital X0 = 0 wants to invest on this market. He buysα shares of the stock (or sells them if α is negative) and buys β call options (orsells them is β is negative). He invests the cash balance on the money market (orborrows if the amount is…arrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning