
Concept explainers
Finding the volume of a flask.
A student obtained a clean, dry glass-stoppered flask. She weighed the flask and stopper on an analytical balance and found the total mass to be
a. First we need to obtain the mass of the water in the flask. This is found by recognizing that the mass of a sample is equal to the sum of the masses of its parts. For the filled, stoppered flask:
Many mass and volume measurements in chemistry are made by the method used in la. This method is called measuring by difference, and is a very useful one.
b. The density of a pure substance is equal to its mass divided by its volume:
The volume of the flask is equal to the volume of the water it contains. Since we know the mass and density of the water, we can find its volume and that of the flask. Make the necessary calculation.

Interpretation:
The volume of the stoppered flask which contains water with density equals to
Concept introduction:
The division of mass of a substance to its volume is known as density of that substance. The expression that is used to represent the density of any substance is given below.
The SI unit of density is
Answer to Problem 1ASA
The volume of the stoppered flask which contains water with density equals to
Explanation of Solution
The given total mass of empty flask with its stopper is
The observed mass of the stoppered flask when it is filled with water is
The density of water is
The mass of water
Firstly, the mass of water that is present in the stoppered flask must be calculated.
The mass of the filled stoppered flask is calculated by the expression given below.
The above expression is rearranged to calculate the mass of water that is present in the stoppered flask as given below.
Substitute the values of empty flask and filled flask in the above expression.
Thus, the mass of water is
The density of any substance is calculated by the expression given below.
The above expression is rearranged to calculate the volume of water that is present in the stoppered flask as given below.
Substitute the values of mass and density of water in the above expression.
So, the volume of water is
As, the volume of flask is equal to the volume of water present in it, therefore, the volume of stoppered flask is also equal to
The volume of the stoppered flask that contains water is
Want to see more full solutions like this?
Chapter 1 Solutions
CHM 111/112 LAB MANUAL >C<
- curved arrows are used to illustrate the flow of electrons. using the provided starting and product structures, draw the cured electron-pushing arrows for thw following reaction or mechanistic steps. be sure to account for all bond-breaking and bond making stepsarrow_forwardUsing the graphs could you help me explain the answers. I assumed that both graphs are proportional to the inverse of time, I think. Could you please help me.arrow_forwardSynthesis of Dibenzalacetone [References] Draw structures for the carbonyl electrophile and enolate nucleophile that react to give the enone below. Question 1 1 pt Question 2 1 pt Question 3 1 pt H Question 4 1 pt Question 5 1 pt Question 6 1 pt Question 7 1pt Question 8 1 pt Progress: 7/8 items Que Feb 24 at You do not have to consider stereochemistry. . Draw the enolate ion in its carbanion form. • Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner. ⚫ Separate multiple reactants using the + sign from the drop-down menu. ? 4arrow_forward
- Shown below is the mechanism presented for the formation of biasplatin in reference 1 from the Background and Experiment document. The amounts used of each reactant are shown. Either draw or describe a better alternative to this mechanism. (Note that the first step represents two steps combined and the proton loss is not even shown; fixing these is not the desired improvement.) (Hints: The first step is correct, the second step is not; and the amount of the anhydride is in large excess to serve a purpose.)arrow_forwardHi I need help on the question provided in the image.arrow_forwardDraw a reasonable mechanism for the following reaction:arrow_forward
- Draw the mechanism for the following reaction: CH3 CH3 Et-OH Et Edit the reaction by drawing all steps in the appropriate boxes and connecting them with reaction arrows. Add charges where needed. Electron-flow arrows should start on the electron(s) of an atom or a bond and should end on an atom, bond, or location where a new bond should be created. H± EXP. L CONT. י Α [1] осн CH3 а CH3 :Ö Et H 0 N о S 0 Br Et-ÖH | P LL Farrow_forward20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward
- 20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward20.00 mL of 0.150 M HCl is titrated with 37.75 mL of NaOH. What is the molarity of the NaOH?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning



