
Concept explainers
Finding the volume of a flask.
A student obtained a clean, dry glass-stoppered flask. She weighed the flask and stopper on an analytical balance and found the total mass to be
a. First we need to obtain the mass of the water in the flask. This is found by recognizing that the mass of a sample is equal to the sum of the masses of its parts. For the filled, stoppered flask:
Many mass and volume measurements in chemistry are made by the method used in la. This method is called measuring by difference, and is a very useful one.
b. The density of a pure substance is equal to its mass divided by its volume:
The volume of the flask is equal to the volume of the water it contains. Since we know the mass and density of the water, we can find its volume and that of the flask. Make the necessary calculation.

Interpretation:
The volume of the stoppered flask which contains water with density equals to
Concept introduction:
The division of mass of a substance to its volume is known as density of that substance. The expression that is used to represent the density of any substance is given below.
The SI unit of density is
Answer to Problem 1ASA
The volume of the stoppered flask which contains water with density equals to
Explanation of Solution
The given total mass of empty flask with its stopper is
The observed mass of the stoppered flask when it is filled with water is
The density of water is
The mass of water
Firstly, the mass of water that is present in the stoppered flask must be calculated.
The mass of the filled stoppered flask is calculated by the expression given below.
The above expression is rearranged to calculate the mass of water that is present in the stoppered flask as given below.
Substitute the values of empty flask and filled flask in the above expression.
Thus, the mass of water is
The density of any substance is calculated by the expression given below.
The above expression is rearranged to calculate the volume of water that is present in the stoppered flask as given below.
Substitute the values of mass and density of water in the above expression.
So, the volume of water is
As, the volume of flask is equal to the volume of water present in it, therefore, the volume of stoppered flask is also equal to
The volume of the stoppered flask that contains water is
Want to see more full solutions like this?
Chapter 1 Solutions
Chemical Principles in the Laboratory
- 03 Question (1 point) For the reaction below, draw both of the major organic products. Be sure to consider stereochemistry. > 1. CH₂CH₂MgBr 2. H₂O 3rd attempt Draw all four bonds at chiral centers. Draw all stereoisomers formed. Draw the structures here. e 130 AN H See Periodic Table See Hint P C Brarrow_forwardYou may wish to address the following issues in your response if they are pertinent to the reaction(s) you propose to employ:1) Chemoselectivity (why this functional group and not another?) 2) Regioselectivity (why here and not there?) 3) Stereoselectivity (why this stereoisomer?) 4) Changes in oxidation state. Please make it in detail and draw it out too in what step what happens. Thank you for helping me!arrow_forward1) Chemoselectivity (why this functional group and not another?) 2) Regioselectivity (why here and not there?) 3) Stereoselectivity (why this stereoisomer?) 4) Changes in oxidation state. Everything in detail and draw out and write it.arrow_forward
- Calculating the pH at equivalence of a titration 3/5 Izabella A chemist titrates 120.0 mL of a 0.7191M dimethylamine ((CH3)2NH) solution with 0.5501 M HBr solution at 25 °C. Calculate the pH at equivalence. The pk of dimethylamine is 3.27. Round your answer to 2 decimal places. Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of HBr solution added. pH = ☐ ✓ 18 Ar Boarrow_forwardAlcohols can be synthesized using an acid-catalyzed hydration of an alkene. An alkene is combined with aqueous acid (e.. sulfuric acid in water). The reaction mechanism typically involves a carbocation intermediate. > 3rd attempt 3343 10 8 Draw arrows to show the reaction between the alkene and hydronium ion. that 2nd attempt Feedback 1st attempt تعمال Ju See Periodic Table See Hint F D Ju See Periodic Table See Hintarrow_forwardDraw the simplified curved arrow mechanism for the reaction of acetone and CHgLi to give the major product. 4th attempt Π Draw the simplified curved arrow mechanism T 3rd attempt Feedback Ju See Periodic Table See Hint H -H H -I H F See Periodic Table See Hintarrow_forward
- Select the correct reagent to accomplish the first step of this reaction. Then draw a mechanism on the Grignard reagent using curved arrow notation to show how it is converted to the final product. 4th attempt Part 1 (0.5 point) Select the correct reagent to accomplish the first step of this reaction. Choose one: OA Mg in ethanol (EtOH) OB. 2 Li in THF O C. Li in THF D. Mg in THF O E Mg in H2O Part 2 (0.5 point) Br Part 1 Bri Mg CH B CH, 1 Draw intermediate here, but no arrows. © TE See Periodic Table See Hint See Hint ין Harrow_forwardSelect the product for the following reaction. HO HO PCC OH ○ OH O HO ○ HO HO HOarrow_forward5:45 Х Select the final product for the following reaction sequence. O O 1. Mg. ether 2.D.Oarrow_forward
- Based on the chart Two similarities between the molecule with alpha glycosidic linkages. Two similarities between the molecules with beta glycosidtic linkages. Two differences between the alpha and beta glycosidic linkages.arrow_forwardplease help fill in the tablearrow_forwardAnswer F pleasearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning



