Concept explainers
Finding the volume of a flask.
A student obtained a clean, dry glass-stoppered flask. She weighed the flask and stopper on an analytical balance and found the total mass to be
a. First we need to obtain the mass of the water in the flask. This is found by recognizing that the mass of a sample is equal to the sum of the masses of its parts. For the filled, stoppered flask:
Many mass and volume measurements in chemistry are made by the method used in la. This method is called measuring by difference, and is a very useful one.
b. The density of a pure substance is equal to its mass divided by its volume:
The volume of the flask is equal to the volume of the water it contains. Since we know the mass and density of the water, we can find its volume and that of the flask. Make the necessary calculation.
Interpretation:
The volume of the stoppered flask which contains water with density equals to
Concept introduction:
The division of mass of a substance to its volume is known as density of that substance. The expression that is used to represent the density of any substance is given below.
The SI unit of density is
Answer to Problem 1ASA
The volume of the stoppered flask which contains water with density equals to
Explanation of Solution
The given total mass of empty flask with its stopper is
The observed mass of the stoppered flask when it is filled with water is
The density of water is
The mass of water
Firstly, the mass of water that is present in the stoppered flask must be calculated.
The mass of the filled stoppered flask is calculated by the expression given below.
The above expression is rearranged to calculate the mass of water that is present in the stoppered flask as given below.
Substitute the values of empty flask and filled flask in the above expression.
Thus, the mass of water is
The density of any substance is calculated by the expression given below.
The above expression is rearranged to calculate the volume of water that is present in the stoppered flask as given below.
Substitute the values of mass and density of water in the above expression.
So, the volume of water is
As, the volume of flask is equal to the volume of water present in it, therefore, the volume of stoppered flask is also equal to
The volume of the stoppered flask that contains water is
Want to see more full solutions like this?
Chapter 1 Solutions
Chemical Principles in the Laboratory
- For each of the following, indicate whether the arrow pushes are valid. Do we break any rules via the arrows? If not, indicate what is incorrect. Hint: Draw the product of the arrow and see if you still have a valid structure. a. b. N OH C. H N + H d. e. f. مه N COHarrow_forwardDecide which is the most acidic proton (H) in the following compounds. Which one can be removed most easily? a) Ha Нь b) Ha Нь c) CI CI Cl Ha Ньarrow_forwardProvide all of the possible resonanse structures for the following compounds. Indicate which is the major contributor when applicable. Show your arrow pushing. a) H+ O: b) c) : N :O : : 0 d) e) Оarrow_forward
- Draw e arrows between the following resonance structures: a) b) : 0: :0: c) :0: N t : 0: بار Narrow_forwardDraw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl Substitution will not occur at a significant rate. Explanation Check :☐ O-CH + Х Click and drag to start drawing a structure.arrow_forwardDraw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl C O Substitution will not occur at a significant rate. Explanation Check + O-CH3 Х Click and drag to start drawing a structure.arrow_forward
- ✓ aw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. C Cl HO–CH O Substitution will not occur at a significant rate. Explanation Check -3 ☐ : + D Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Cearrow_forwardPlease correct answer and don't used hand raitingarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Determine whether the following reaction is an example of a nucleophilic substitution reaction: Br OH HO 2 -- Molecule A Molecule B + Br 义 ollo 18 Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. Which of the reactants is referred to as the nucleophile in this reaction? Which of the reactants is referred to as the organic substrate in this reaction? Use a ŏ + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. ◇ Yes O No O Molecule A Molecule B Molecule A Molecule B टेarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning