Atkins' Physical chemistry
Atkins' Physical chemistry
11th Edition
ISBN: 9780198814740
Author: ATKINS, P. W. (peter William), 1940- (author.)
Publisher: Oxford University Press,
Question
Book Icon
Chapter 1, Problem 1A.8BE

(i)

Interpretation Introduction

Interpretation: The volume of the given gas mixture at 300K has to be calculated.

Concept introduction: The partial pressure of any gas in a mixture of gases is calculated using the total pressure of the mixture and the mole fraction of the gas in the mixture.  This is represented by the formula given below as,

  ptotal=paxa

(i)

Expert Solution
Check Mark

Answer to Problem 1A.8BE

The volume of the given gas mixture at 300K has been calculated as 3.14×10-3m3_.

Explanation of Solution

The mass of neon given is equal to 225mg .  The number of moles of neon can be calculated using the formula given below as,

  n=GivenmassMolarmass

Where,

  • Ø  n is the number of moles.

The molar mass of neon is 20.1797g/mol.  Substitute the values in the above equation for neon as given below.

    n=GivenmassMolarmassnNe=225×103g20.1797g/mol=11.149×103mol

The molar mass of methane and argon are 16g/mol and 39.948g/mol respectively.  The given mass of methane and argon are 320mg and 175mg respectively.  Similarly, the number of moles of methane and argon are calculated as given below.

    n=GivenmassMolarmassnCH4=320×103g16g/mol=20×103mol

    n=GivenmassMolarmassnAr=175×103g39.948g/mol=4.38×103mol

The total number of moles of the gas mixture is calculated as given below.

  ntotal=nNe+nCH4+nAr

Substitute the values in the above equation as follows.

    ntotal=nNe+nCH4+nAr=11.149×103mol+20×103mol+4.38×103mol=35.529×103mol

The mole fraction of neon is calculated using the formula given below as,

    xNe=nNenTotal

Substitute the values in the above equation as follows.

    xNe=nNenTotal=11.149×103mol35.529×103mol=0.313

Total pressure is calculated using the formula given below as,

    ptotal=pNexNe

The partial pressure of neon is given as 8.87kPa.  Substitute the values in the above equation as follows.

    ptotal=pNexNe=8.87kPa0.313=28.3kPa

The perfect gas equation is given by the formula as,

    pV=nRT

Where,

  • Ø  p is the total pressure.
  • Ø  V is the volume.
  • Ø  n is the number of moles.
  • Ø  R is the gas constant.
  • Ø  T is the temperature.

Rearrange the above equation for volume as follows.

    pV=nRTV=nRTp

Substitute the values in the above equation as follows.

    V=nRTp=(35.529×103mol)(8.314Pam3K1mol1)(300K)28.3×103Pa=3.14×10-3m3_

Thus, the volume of the gas mixture is 3.14×10-3m3_.

(ii)

Interpretation Introduction

Interpretation: The total pressure of the given gas mixture at 300K has to be calculated.

Concept introduction: The partial pressure of any gas in a mixture of gases is calculated using the total pressure of the mixture and the mole fraction of the gas in the mixture.  This is represented by the formula given below as,

ptotal=paxa

(ii)

Expert Solution
Check Mark

Answer to Problem 1A.8BE

The total pressure of the given gas mixture at 300K has been calculated as 28.3kPa_.

Explanation of Solution

The mass of neon given is equal to 225mg.  The number of moles of neon can be calculated using the formula given below as,

  n=GivenmassMolarmass

Where,

  • Ø  n is the number of moles.

The molar mass of neon is 20.1797g/mol.  Substitute the values in the above equation for neon as given below.

    n=GivenmassMolarmassnNe=225×103g20.1797g/mol=11.149×103mol

The molar mass of methane and argon are 16g/mol and 39.948g/mol respectively.  The given mass of methane and argon are 320mg and 175mg respectively.  Similarly, the number of moles of methane and argon are calculated as given below.

    n=GivenmassMolarmassnCH4=320×103g16g/mol=20×103mol

    n=GivenmassMolarmassnAr=175×103g39.948g/mol=4.38×103mol

The total number of moles of the gas mixture is calculated as given below.

  ntotal=nNe+nCH4+nAr

Substitute the values in the above equation as follows.

    ntotal=nNe+nCH4+nAr=11.149×103mol+20×103mol+4.38×103mol=35.529×103mol

The mole fraction of neon is calculated using the formula given below as,

    xNe=nNenTotal

Substitute the values in the above equation as follows.

    xNe=nNenTotal=11.149×103mol35.529×103mol=0.313

Total pressure is calculated using the formula given below as,

    ptotal=pNexNe

The partial pressure of neon is given as 8.87kPa.  Substitute the values in the above equation as follows.

    ptotal=pNexNe=8.87kPa0.313=28.3kPa_

Thus, the total pressure of the gas mixture is 28.3kPa_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What are the IUPAC Names of all the compounds in the picture?
1) a) Give the dominant Intermolecular Force (IMF) in a sample of each of the following compounds. Please show your work. (8) SF2, CH,OH, C₂H₂ b) Based on your answers given above, list the compounds in order of their Boiling Point from low to high. (8)
19.78 Write the products of the following sequences of reactions. Refer to your reaction road- maps to see how the combined reactions allow you to "navigate" between the different functional groups. Note that you will need your old Chapters 6-11 and Chapters 15-18 roadmaps along with your new Chapter 19 roadmap for these. (a) 1. BHS 2. H₂O₂ 3. H₂CrO4 4. SOCI₂ (b) 1. Cl₂/hv 2. KOLBU 3. H₂O, catalytic H₂SO4 4. H₂CrO4 Reaction Roadmap An alkene 5. EtOH 6.0.5 Equiv. NaOEt/EtOH 7. Mild H₂O An alkane 1.0 2. (CH3)₂S 3. H₂CrO (d) (c) 4. Excess EtOH, catalytic H₂SO OH 4. Mild H₂O* 5.0.5 Equiv. NaOEt/EtOH An alkene 6. Mild H₂O* A carboxylic acid 7. Mild H₂O* 1. SOC₁₂ 2. EtOH 3.0.5 Equiv. NaOEt/E:OH 5.1.0 Equiv. NaOEt 6. NH₂ (e) 1. 0.5 Equiv. NaOEt/EtOH 2. Mild H₂O* Br (f) i H An aldehyde 1. Catalytic NaOE/EtOH 2. H₂O*, heat 3. (CH,CH₂)₂Culi 4. Mild H₂O* 5.1.0 Equiv. LDA Br An ester 4. NaOH, H₂O 5. Mild H₂O* 6. Heat 7. MgBr 8. Mild H₂O* 7. Mild H₂O+

Chapter 1 Solutions

Atkins' Physical chemistry

Ch. 1 - Prob. 1A.3BECh. 1 - Prob. 1A.4AECh. 1 - Prob. 1A.4BECh. 1 - Prob. 1A.5AECh. 1 - Prob. 1A.5BECh. 1 - Prob. 1A.6AECh. 1 - Prob. 1A.6BECh. 1 - Prob. 1A.7AECh. 1 - Prob. 1A.7BECh. 1 - Prob. 1A.8AECh. 1 - Prob. 1A.8BECh. 1 - Prob. 1A.9AECh. 1 - Prob. 1A.9BECh. 1 - Prob. 1A.10AECh. 1 - Prob. 1A.10BECh. 1 - Prob. 1A.11AECh. 1 - Prob. 1A.11BECh. 1 - Prob. 1A.1PCh. 1 - Prob. 1A.2PCh. 1 - Prob. 1A.3PCh. 1 - Prob. 1A.4PCh. 1 - Prob. 1A.5PCh. 1 - Prob. 1A.6PCh. 1 - Prob. 1A.7PCh. 1 - Prob. 1A.8PCh. 1 - Prob. 1A.9PCh. 1 - Prob. 1A.10PCh. 1 - Prob. 1A.11PCh. 1 - Prob. 1A.12PCh. 1 - Prob. 1A.13PCh. 1 - Prob. 1A.14PCh. 1 - Prob. 1B.1DQCh. 1 - Prob. 1B.2DQCh. 1 - Prob. 1B.3DQCh. 1 - Prob. 1B.1AECh. 1 - Prob. 1B.1BECh. 1 - Prob. 1B.2AECh. 1 - Prob. 1B.2BECh. 1 - Prob. 1B.3AECh. 1 - Prob. 1B.3BECh. 1 - Prob. 1B.4AECh. 1 - Prob. 1B.4BECh. 1 - Prob. 1B.5AECh. 1 - Prob. 1B.5BECh. 1 - Prob. 1B.6AECh. 1 - Prob. 1B.6BECh. 1 - Prob. 1B.7AECh. 1 - Prob. 1B.7BECh. 1 - Prob. 1B.8AECh. 1 - Prob. 1B.8BECh. 1 - Prob. 1B.9AECh. 1 - Prob. 1B.9BECh. 1 - Prob. 1B.1PCh. 1 - Prob. 1B.2PCh. 1 - Prob. 1B.3PCh. 1 - Prob. 1B.4PCh. 1 - Prob. 1B.5PCh. 1 - Prob. 1B.6PCh. 1 - Prob. 1B.7PCh. 1 - Prob. 1B.8PCh. 1 - Prob. 1B.9PCh. 1 - Prob. 1B.10PCh. 1 - Prob. 1B.11PCh. 1 - Prob. 1C.1DQCh. 1 - Prob. 1C.2DQCh. 1 - Prob. 1C.3DQCh. 1 - Prob. 1C.4DQCh. 1 - Prob. 1C.1AECh. 1 - Prob. 1C.1BECh. 1 - Prob. 1C.2AECh. 1 - Prob. 1C.2BECh. 1 - Prob. 1C.3AECh. 1 - Prob. 1C.3BECh. 1 - Prob. 1C.4AECh. 1 - Prob. 1C.4BECh. 1 - Prob. 1C.5AECh. 1 - Prob. 1C.5BECh. 1 - Prob. 1C.6AECh. 1 - Prob. 1C.6BECh. 1 - Prob. 1C.7AECh. 1 - Prob. 1C.7BECh. 1 - Prob. 1C.8AECh. 1 - Prob. 1C.8BECh. 1 - Prob. 1C.9AECh. 1 - Prob. 1C.9BECh. 1 - Prob. 1C.1PCh. 1 - Prob. 1C.2PCh. 1 - Prob. 1C.3PCh. 1 - Prob. 1C.4PCh. 1 - Prob. 1C.5PCh. 1 - Prob. 1C.6PCh. 1 - Prob. 1C.7PCh. 1 - Prob. 1C.8PCh. 1 - Prob. 1C.9PCh. 1 - Prob. 1C.10PCh. 1 - Prob. 1C.11PCh. 1 - Prob. 1C.12PCh. 1 - Prob. 1C.13PCh. 1 - Prob. 1C.14PCh. 1 - Prob. 1C.15PCh. 1 - Prob. 1C.16PCh. 1 - Prob. 1C.17PCh. 1 - Prob. 1C.18PCh. 1 - Prob. 1C.19PCh. 1 - Prob. 1C.20PCh. 1 - Prob. 1C.22PCh. 1 - Prob. 1C.23PCh. 1 - Prob. 1C.24PCh. 1 - Prob. 1.1IACh. 1 - Prob. 1.2IACh. 1 - Prob. 1.3IA
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY