
University Physics, Volume 2 - Technology Update Custom Edition for Texas A&M - College Station, 2/e
1st Edition
ISBN: 9781323390382
Author: YOUNG
Publisher: Pearson Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 1.56P
(a)
To determine
The mass of the heart of adult human.
(b)
To determine
The mass of a cell.
(c)
To determine
The mass of honeybee.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 13.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol.
8
Two moving charged particles exert forces on each other because each creates a magnetic field that acts
on the other. These two "Lorentz" forces are proportional to vix (2 xr) and 2 x (vi x-r), where is the vector
between the particle positions. Show that these two forces are equal and opposite in accordance with Newton's third
law if and only if rx (vi × 2) = 0.
6
The force = +3 + 2k acts at the point (1, 1, 1). Find the torque of the force about
(a)
(b)
the point (2, -1, 5). Careful about the direction of ŕ between the two points.
the line = 21-+5k+ (i-+2k)t. Note that the line goes through the point (2, -1, 5).
Chapter 1 Solutions
University Physics, Volume 2 - Technology Update Custom Edition for Texas A&M - College Station, 2/e
Ch. 1 - How many correct experiments do we need to...Ch. 1 - Suppose you are asked to compute the tangent of...Ch. 1 - What is your height in centimeters? What is your...Ch. 1 - The U.S. National Institute of Standards and...Ch. 1 - What physical phenomena (other than a pendulum or...Ch. 1 - Describe how you could measure the thickness of a...Ch. 1 - The quantity = 3.14159... is a number with no...Ch. 1 - What are the units of volume? Suppose another...Ch. 1 - Three archers each fire four arrows at a target....Ch. 1 - Is the vector (i+j+k) a unit vector? Is the vector...
Ch. 1 - A circular racetrack has a radius of 500 m. What...Ch. 1 - Can you find two vectors with different lengths...Ch. 1 - The direction of time is said to proceed from past...Ch. 1 - Air traffic controllers give instructions called...Ch. 1 - Can you find a vector quantity that has a...Ch. 1 - (a) Does it make sense to say that a vector is...Ch. 1 - Prob. Q1.17DQCh. 1 - If A and B are nonzero vectors, is it possible for...Ch. 1 - Prob. Q1.19DQCh. 1 - Prob. Q1.20DQCh. 1 - Figure 1.7 shows the result of an unacceptable...Ch. 1 - Which of the following are legitimate mathematical...Ch. 1 - Consider the vector products A (B C) and (AB)C....Ch. 1 - Show that, no matter what A and B are, A(AB)=0....Ch. 1 - (a) If AB=0, does it necessarily follow that A = 0...Ch. 1 - If A=0 for a vector in the xy-plane, does it...Ch. 1 - Starting with the definition 1 in. = 2.54 cm, find...Ch. 1 - According to the label on a bottle of salad...Ch. 1 - How many nanoseconds does it take light to travel...Ch. 1 - The density of gold is 19.3 g/cm3. What is this...Ch. 1 - The most powerful engine available for the classic...Ch. 1 - A square field measuring 100.0 m by 100.0 m has an...Ch. 1 - How many years older will you be 1.00 gigasecond...Ch. 1 - While driving in an exotic foreign land, you see a...Ch. 1 - A certain fuel-efficient hybrid car gets gasoline...Ch. 1 - The following conversions occur frequently in...Ch. 1 - Neptunium. In the fall of 2002, scientists at Los...Ch. 1 - BIO (a) The recommended daily allowance (RDA) of...Ch. 1 - BIO Bacteria. Bacteria vary in size, but a...Ch. 1 - With a wooden ruler, you measure the length of a...Ch. 1 - A useful and easy-to-remember approximate value...Ch. 1 - Express each approximation of to six significant...Ch. 1 - BIO A rather ordinary middle-aged man is in the...Ch. 1 - How many gallons of gasoline are used in the...Ch. 1 - BIO How many times does a typical person blink her...Ch. 1 - BIO Four astronauts are in a spherical space...Ch. 1 - In Wagners opera Das Rheingold, the goddess Freia...Ch. 1 - BIO How many times does a human heart beat during...Ch. 1 - You are using water to dilute small amounts of...Ch. 1 - For the vectors A and B in Fig. E1.24, use a scale...Ch. 1 - A postal employee drives a delivery truck along...Ch. 1 - A spelunker is surveying a cave. She follows a...Ch. 1 - Compute the x- and y-components of the vectors...Ch. 1 - Let be the angle that the vector A makes with the...Ch. 1 - Prob. 1.29ECh. 1 - For the vectors A and B in Fig. E1.24, use the...Ch. 1 - A postal employee drives a delivery truck over the...Ch. 1 - A disoriented physics professor drives 3.25 km...Ch. 1 - Find the magnitude and direction of the vector...Ch. 1 - Vector A is 2.80 cm long and is 60.0 above the...Ch. 1 - In each case, find the x- and y-components of...Ch. 1 - Write each vector in Fig. E1.24 in terms of the...Ch. 1 - Given two vectors A=4.00i+7.00j and B=5.00i2.00j,...Ch. 1 - (a) Write each vector in Fig. E1.39 in terms of...Ch. 1 - Prob. 1.40ECh. 1 - Given two vectors A=2.00i+3.00j+4.00k and...Ch. 1 - (a) Find the scalar product of the vectors A and B...Ch. 1 - For the vectors A,B and C in Fig. E1.24, find the...Ch. 1 - Find the vector product AB (expressed in unit...Ch. 1 - Find the angle between each of these pairs of...Ch. 1 - For the two vectors in Fig. E1.35, find the...Ch. 1 - For the two vectors A and D in Fig. E1.24, find...Ch. 1 - For the two vectors A and B in Fig. E1.39, find...Ch. 1 - White Dwarfs and Neutron Stars. Recall that...Ch. 1 - An acre has a length of one furlong (18 mi) and a...Ch. 1 - An Earthlike Planet. In January 2006 astronomers...Ch. 1 - The Hydrogen Maser. A maser is a laser-type device...Ch. 1 - BIO Breathing Oxygen. The density of air under...Ch. 1 - A rectangular piece of aluminum is 7.60 0.01 cm...Ch. 1 - As you eat your way through a bag of chocolate...Ch. 1 - Prob. 1.56PCh. 1 - BIO Estimate the number of atoms in your body....Ch. 1 - Two ropes in a vertical plane exert...Ch. 1 - Two workers pull horizontally on a heavy box, but...Ch. 1 - Three horizontal ropes pull on a large stone stuck...Ch. 1 - As noted in Exercise 1.26, a spelunker is...Ch. 1 - Emergency Landing. A plane leaves the airport in...Ch. 1 - BIO Dislocated Shoulder. A patient with a...Ch. 1 - A sailor in a small sailboat encounters shifting...Ch. 1 - You leave the airport in College Station and fly...Ch. 1 - On a training flight, a student pilot flies from...Ch. 1 - As a test of orienteering skills, your physics...Ch. 1 - Getting Back. An explorer in Antarctica leaves his...Ch. 1 - You are lost at night in a large, open field. Your...Ch. 1 - A ship leaves the island of Guam and sails 285 km...Ch. 1 - BIO Bones and Muscles. A physical therapy patient...Ch. 1 - You decide to go to your favorite neighborhood...Ch. 1 - While following a treasure map, you start at an...Ch. 1 - A fence post is 52.0 m from where you are...Ch. 1 - A dog in an open field runs 12.0 m cast and then...Ch. 1 - Ricardo and Jane are standing under a tree in the...Ch. 1 - You are camping with Joe and Karl. Since all three...Ch. 1 - Bond Angle in Methane. In the methane molecule,...Ch. 1 - Vectors A and B have scalar product 6.00, and...Ch. 1 - A cube is placed so that one corner is at the...Ch. 1 - Vector A has magnitude 12.0 m, and vector B has...Ch. 1 - Prob. 1.82PCh. 1 - The scalar product of vectors A and B is +48.0 m2....Ch. 1 - Two vectors A and B have magnitudes A = 3.00 and B...Ch. 1 - You are given vectors A=5.0i6.5j and 3.5i7.0j. A...Ch. 1 - Prob. 1.86PCh. 1 - DATA You are a team leader at a pharmaceutical...Ch. 1 - DATA You are a mechanical engineer working for a...Ch. 1 - DATA Navigating in the Solar System. The Mars...Ch. 1 - Completed Pass. The football team at Enormous...Ch. 1 - Navigating in the Big Dipper. All of the stars of...Ch. 1 - BIO CALCULATING LUNG VOLUME IN HUMANS. In humans,...Ch. 1 - BIO CALCULATING LUNG VOLUME IN HUMANS. In humans,...Ch. 1 - Individuals vary considerably in total lung...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 5 Find the total work done by forces A and B if the object undergoes the displacement C. Hint: Can you add the two forces first?arrow_forward1 F2 F₁ -F₁ F6 F₂ S A Work done on the particle as it moves through the displacement is positive. True False by the force Farrow_forwardA student measuring the wavelength produced by a vapour lamp directed the lightthrough two slits with a separation of 0.20 mm. An interference pattern was created on the screen,3.00 m away. The student found that the distance between the first and the eighth consecutive darklines was 8.0 cm. Draw a quick picture of the setup. What was the wavelength of the light emittedby the vapour lamp?arrow_forward
- A ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut Rarrow_forward(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the coefficient of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the…arrow_forward(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 x 104 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 10 m/s relative…arrow_forward
- As shown in the figure, a roller-coaster track includes a circular loop of radius R in a vertical plane. A car of mass m is released from rest at a height h above the bottom of the circular section and then moves freely along the track with negligible energy loss due to friction. i (a) First suppose the car barely makes it around the loop; at the top of the loop, the riders are upside down and feel weightless. Find the required height h of the release point above the bottom of the loop. (Use any variable or symbol stated above along with the following as necessary: g.) h = (b) If the car is released at some point above the minimum required height, determine the amount by which the normal force on the car at the bottom of the loop exceeds the normal force on the car at the top of the loop. (Consider the moments when the car reaches the top and when it reaches the bottom again. Use any variable or symbol stated above along with the following as necessary: g.) NB - NT = The normal force…arrow_forwardOne of the more challenging elements in pairs figure skating competition is the "death spiral" (see the figure below), in which the female figure skater, balanced on one skate, is spun in a circle by the male skater. i The axis of rotation of the pair is vertical and through the toe of the skate on the male skater's leg that is bent backward, the toe being planted into the ice. During the one-armed maneuver first developed in the 1940s, the outstretched arm of the male skater must apply a large force to support a significant fraction of the female skater's weight and also to provide her centripetal acceleration. This force represents a danger to the structure of the wrist of the male skater. (a) Modeling the female skater, of mass 47.0 kg, as a particle, and assuming that the combined length of the two outstretched arms is 129 cm and that arms make an angle of 45.0° with the horizontal, what is the magnitude of the force (in N) exerted by the male skater's wrist if each turn is…arrow_forwardOne popular design of a household juice machine is a conical, perforated stainless steel basket 3.30 cm high with a closed bottom of diameter 8.00 cm and open top of diameter 14.40 cm that spins at 16000 revolutions per minute about a vertical axis. Solid pieces of fruit are chopped into granules by cutters at the bottom of the spinning cone. Then the fruit granules rapidly make their way to the sloping surface where the juice is extracted to the outside of the cone through the mesh perforations. The dry pulp spirals upward along the slope to be ejected from the top of the cone. The juice is collected in an enclosure immediately surrounding the sloped surface of the cone. Pulp Motor Spinning basket Juice spout (a) What centripetal acceleration does a bit of fruit experience when it is spinning with the basket at a point midway between the top and bottom? m/s² ---Direction--- (b) Observe that the weight of the fruit is a negligible force. What is the normal force on 2.00 g of fruit at…arrow_forward
- A satellite is in a circular orbit around the Earth at an altitude of 3.88 × 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 × 106 m, and the mass of the Earth is 5.98 x 1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s² toward the center of the eartharrow_forwardShown below is a waterslide constructed in the late 1800's. This slide was unique for its time due to the fact that a large number of small wheels along its length made friction negligible. Riders rode a small sled down the chute which ended with a horizontal section that caused the sled and rider to skim across the water much like a flat pebble. The chute was 9.76 m high at the top and 54.3 m long. Consider a rider and sled with a combined mass of 81.0 kg. They are pushed off the top of the slide from point A with a speed of 2.90 m/s, and they skim horizontally across the water a distance of 50 m before coming to rest. 9.76 m Engraving from Scientific American, July 1888 A (a) 20.0 m/ -54.3 m- 50.0 m (b) (a) Find the speed (in m/s) of the sled and rider at point C. 14.14 m/s (b) Model the force of water friction as a constant retarding force acting on a particle. Find the magnitude (in N) of the friction force the water exerts on the sled. 162.2 N (c) Find the magnitude (in N) of the…arrow_forwardA small object with mass 3.60 kg moves counterclockwise with constant angular speed 1.40 rad/s in a circle of radius 2.55 m centered at the origin. It starts at the point with position vector 2.551 m. Then it undergoes an angular displacement of 9.15 rad. (a) What is its new position vector? m (b) In what quadrant is the object located and what angle does its position vector make with the positive x-axis? ---Select--- ✓ at (c) What is its velocity? m/s (d) In what direction is it moving? (Give a negative angle.) ° from the +x direction. (e) What is its acceleration? m/s² (f) What total force is exerted on the object? Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University