(a)
Interpretation:
The van der Waals equation of state has to be expressed as the power series of
Concept Introduction:
van der Waals equation:
van der Waals equation represents the real gas equation. Real gas molecules have their own volume and there is force of attraction and repulsion constantly working between the real gas molecules unlike the ideal gas molecules. Hence ideal gas equation is subjected to modify with pressure and volume correction and thus van der Waals equation has been formed for real gases.
(a)

Explanation of Solution
A mathematical function of the form
Now the van der Waals equation of state has to be expressed as an expansion series of
Hence van der Waals equation can be represented as,
Now the form needed for expansion is
Now according to the series expansion,
Hence here
So the expansion form can be written as,
The equation can be rearranged as,
Thus the van der Waals equation can be represented as the power series of
(b)
Interpretation:
An expression of the Boyle temperature has to be derived in the terms of van der Waals constants
Concept Introduction:
van der Waals equation:
van der Waals equation represents the real gas equation. Real gas molecules have their own volume and there is force of attraction and repulsion constantly working between the real gas molecules unlike the ideal gas molecules. Hence ideal gas equation is subjected to modify with pressure and volume correction and thus van der Waals equation has been formed for real gases.
Virial equation:
General equation of states for real gases is virial equation which is proposed by Kammerlingh-Onnes. He proposed the equation as,
Here,
The 1st virial coefficient is
Boyle temperature:
The temperature at which real gas starts behaving ideally is called the Boyle temperature.
At this temperature the 2nd virial coefficient becomes zero and 3rd, 4th and higher virial coefficients become insignificant. The virial equation for real gas becomes ideal gas equation
(b)

Explanation of Solution
At Boyle temperature the 2nd virial coefficient becomes zero.
Now, from part (a) it has been obtained that,
Virial equation is,
Thus comparing the above two equations the 2nd virial coefficient is,
At Boyle temperature
Thus,
Thus the expression for Boyle temperature is
(c)
Interpretation:
Boyle temperature for carbon dioxide has to be calculated for given van der Waals constant values.
Concept Introduction:
van der Waals equation:
van der Waals equation represents the real gas equation. Real gas molecules have their own volume and there is force of attraction and repulsion constantly working between the real gas molecules unlike the ideal gas molecules. Hence ideal gas equation is subjected to modify with pressure and volume correction and thus van der Waals equation has been formed for real gases.
Virial equation:
General equation of states for real gases is virial equation which is proposed by Kammerlingh-Onnes. He proposed the equation as,
Here,
The 1st virial coefficient is
Boyle temperature:
The temperature at which real gas starts behaving ideally is called the Boyle temperature.
At this temperature the 2nd virial coefficient becomes zero and 3rd, 4th and higher virial coefficients become insignificant. The virial equation for real gas becomes ideal gas equation
(c)

Answer to Problem 1.3PR
The Boyle temperature for carbon dioxide is
Explanation of Solution
From the above part (b) the expression for Boyle temperature has been obtained as,
Given that the values of van der Waals constants are,
Thus the value of Boyle temperature for carbon dioxide is,
Hence the Boyle temperature for carbon dioxide is
Want to see more full solutions like this?
Chapter 1 Solutions
Elements of Physical Chemistry
- For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. དྲ。 ✗MgBr ? O CI Will the first product that forms in this reaction create a new C-C bond? Yes No • ? Will the first product that forms in this reaction create a new CC bond? Yes No × : ☐ Xarrow_forwardPredict the major products of this organic reaction: OH NaBH4 H ? CH3OH Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. ☐ : Sarrow_forwardPredict the major products of this organic reaction: 1. LIAIHA 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. X : ☐arrow_forward
- For each reaction below, decide if the first stable organic product that forms in solution will create a new C - C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 tu ? ? OH Will the first product that forms in this reaction create a new CC bond? Yes No Will the first product that forms in this reaction create a new CC bond? Yes No C $ ©arrow_forwardAs the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C-C bond as its major product: 1. MgCl ? 2. H₂O* If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new CC bond. G marrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M NH4 Ksp Hg2Br2 = 5.6×10-23.arrow_forward
- give example for the following(by equation) a. Converting a water insoluble compound to a soluble one. b. Diazotization reaction form diazonium salt c. coupling reaction of a diazonium salt d. indacator properties of MO e. Diazotization ( diazonium salt of bromobenzene)arrow_forward2-Propanone and ethyllithium are mixed and subsequently acid hydrolyzed. Draw and name the structures of the products.arrow_forward(Methanesulfinyl)methane is reacted with NaH, and then with acetophenone. Draw and name the structures of the products.arrow_forward
- 3-Oxo-butanenitrile and (E)-2-butenal are mixed with sodium ethoxide in ethanol. Draw and name the structures of the products.arrow_forwardWhat is the reason of the following(use equations if possible) a.) In MO preperation through diazotization: Addition of sodium nitrite in acidfied solution in order to form diazonium salt b.) in MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at low pH c.) In MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at pH 4.5 d.) Avoiding not cooling down the reaction mixture when preparing the diazonium salt e.) Cbvcarrow_forwardA 0.552-g sample of an unknown acid was dissolved in water to a total volume of 20.0 mL. This sample was titrated with 0.1103 M KOH. The equivalence point occurred at 29.42 mL base added. The pH of the solution at 10.0 mL base added was 3.72. Determine the molar mass of the acid. Determine the Ka of the acid.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





