Concept explainers
The surfaces
(a)
The enclosed volume.
Answer to Problem 1.23P
The enclosed volume is 6.28
Explanation of Solution
Given information:
For the closed surface,
Concept used:
Volume=
Calculation:
Substituting the values in equation (1), we get
Conclusion:
Therefore, the enclosed volume is 6.28.
(b)
Total area of the enclosing surface.
Answer to Problem 1.23P
Total area of the enclosing surface is 20.7.
Explanation of Solution
Given information:
For the closed surface,
Concept used:
Area=
Calculation:
Substituting the values in equation (2), we get
Further integrating we have,
Conclusion:
Therefore, the total area of the enclosing surface is 20.7
(c)
Total length of the twelve edges of the surfaces.
Answer to Problem 1.23P
Total length of the twelve edges of the surfaces is 22.4.
Explanation of Solution
Given information:
For the closed surface,
Concept used:
Calculation:
From equation (3), we get
Conclusion:
Therefore, the total length is 22.4.
(d)
The length of the longest straight line that lies entirely within the volume.
Answer to Problem 1.23P
The length of the longest straight line that lies entirely within the volume is 3.21.
Explanation of Solution
Given information:
For the closed surface,
Concept used:
Calculation:
The longest straight line will be between the points
Now converting A and B to Cartesian co-ordinates,
For A ,
Therefore,
For B ,
Therefore,
So, from equation (4),
Conclusion:
Therefore, the total length is 3.21.
Want to see more full solutions like this?
Chapter 1 Solutions
Engineering Electromagnetics
- Don't use ai to answer I will report you answerarrow_forwardDO NOT USE AI OR CHATGPT NEED HAND WRITTEN ANSWERarrow_forward6 Multiple Choice 10 points Use the measured characteristics given in the figure. From the curves shown, this is 220V Start 160V Start 190V Start, DC series motor DC shunt motor DC separately excited motor DC series generator 160V Start 220V Start 190V Startarrow_forward
- 000 . Use the measured characteristics given in the figure. For Delta connected motor, the maximum load (N.m) you can put at starting is " 28 " 24 22 28 24 18 14 13 3.4 2.8 3.6 0.9 1800arrow_forwardCan I have a written solutionarrow_forwardA 100-kVA, 2500/125-V, 50-Hz, step-down transformer has the following parameters: R1= 1.5Ω, X1= 2.8Ω, R2= 15mΩ, X2=20mΩ, Rc1= 3kΩ, Xm1= 5kΩ The transformer delivers 85% of the rated load at a terminal voltage of 115 V and a power factor of 0.866 lagging. Determine (a) the efficiency, and (b) the voltage regulation. Draw the phasor diagram of the transformer. Use the approximate equivalent circuit referred to the secondary side.arrow_forward
- Don't use ai to answer I will report you answerarrow_forwardDon't use ai to answer I will report you answer.arrow_forwardPV station 8.6 Consider the microgrid given in Figure 8.56. The positive sequence impedance of the transmission lines is given in the one-line diagram (Figure 8.56). The system data are as follows: PV generating station: 2 MW, 460 V AC; positive, negative, and zero sequence impedance of each line is equal to 10%. The gas turbine gen- erating station is rated at 10 MVA, 3.2 kV, with positive sequence reac- tance of 10%. The generator negative sequence impedance is equal to the positive sequence, and the zero sequence impedance is equal to half (1/2) of the positive sequence impedance. Transformers' positive sequence impedance is equal to the negative sequence and equal to the zero sequence impedance. DC/AC 3 CB T₁ AC PV bus YA 6 1+/10 20 CB CB CB m 0.5+15 личи 5 A S5 2 Gas turbine 0.3+16 7 ww NA Local S6 ST utility Figure 8.56 A one-line diagram for Problem 8.6.arrow_forward
- Can you calculate the needed values. When it ask me to measure the values do I attach the function generator and use the values mentioned below? or do i leave the function generator off and measure? Any tips on how to connect the multimeters would be appreciated but not primary request.arrow_forwardDon't use ai to answer I will report you answerarrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,