![Structural Steel Design (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134589657/9780134589657_largeCoverImage.gif)
When did an economical production method of steel become available?
![Check Mark](/static/check-mark.png)
The invention of economical production method of the steel.
Explanation of Solution
Steel has been the most used material in the structures for a few centuries. The production of steel was quite expensive compared to other materials. In earlier days of the nineteenth century, the American inventors started processes which can produce the steel economically. The process was named as Bessemer process. By this process, the steel production cost reduced to 82% to the previous cost. So, this is the first economical production method invention in steel according to the production cost.
Therefore, we can say that economic production of steel started in the early 19th century.
Want to see more full solutions like this?
Chapter 1 Solutions
Structural Steel Design (6th Edition)
Additional Engineering Textbook Solutions
Mechanics of Materials (10th Edition)
Degarmo's Materials And Processes In Manufacturing
Management Information Systems: Managing The Digital Firm (16th Edition)
Modern Database Management
Electric Circuits. (11th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
- need helparrow_forwardneed helparrow_forwardThe figure shows the section of a gravity dam (non-overflow portion) built of concrete. Calculate (neglecting earthquake effects) the maximum vertical stresses at the heel and toe of the dam. Assume weight of concrete = 23.5 kN/m, and unit length of dam. Allowable stress in concrete may be taken 2500 kN/m and assuming yw = 9.81 kN/m. Max. W.L.. =285-0 6m =289-0 280-0 3 of drainage gallery Tail water 01 =211-0 205-0 56marrow_forward
- The cantilever truss is part of vertical support system subjected to dead loads (D) and snow loads (S). The dead load is 70 psf (pound per square foot) and the snow load is 40 psf. The trusses are spaced at 20 ft apart. a) Determine the joint vertical loads PD and PS acting on joints C, D, E, F, and G. b) Determine the axial force in column JL due to dead load and due to snow load. c) Determine the force in truss member JF due to dead load and due to snow load using the method of sections. d) Using the LRFD load combinations, what it the maximum load Pu in column JL? e) Using the LRFD load combinations, what it the maximum load Pu in truss member JF?arrow_forwardneed helparrow_forward3" 17" Determine the moment of inertia and the section modulus for the steel section shown in the illustration. Show your work. 15" + k 1.5"arrow_forward
- A steel bar with a cross-sectional area of 6 in² and graded for 36 ksi is fixed to one end and subjected to an axial tensile force of 150 kips. 1) What is the stress in the bar? 2) Using ASD, determine if the cross sectional area of the bar is strong enough for the applied tensile force. (HINT: 2=1.67, the factored grade should be 36/1.67= 21.5 ksi)arrow_forwardDetermine the section modulus of a rectangle 6" wide and 9" tall. Show your work. 6" 9"arrow_forward3.140 A gate with a circular cross section is held closed by a lever 1-m long attached to a buoyant cylinder. The cylinder is 25 cm in diameter and weighs 200 N. The gate is attached to a horizontal shaft so it can pivot about its center. The liquid is water. The chain and lever attached to the gate have negligible weight. Find the length of the chain such that the gate is just on the verge of opening when the water depth above the gate hinge is 10 m. 0.25 m 10 m Pivot 1m Problem 3.140arrow_forward
- Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
- Solid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Architectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage LearningSteel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305086272/9781305086272_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305084766/9781305084766_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111988609/9781111988609_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305635203/9781305635203_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285165738/9781285165738_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337094740/9781337094740_smallCoverImage.gif)