
Interpretation:
Units for the electric power should be determined as the combination of fundamental S. I. units.
Concept Introduction:
SI stands for International System of units.
SI defines 7 units of different quantities as the basic units from which all other SI units are derived. These basic units are:
Quantity | Unit |
Mass | Kilogarm (Kg) |
Length | Metre (m) |
Time | Second (s) |
Electric current | Ampere (A) |
Temperature | Kelvin (K) |
Luminous intensity | Candela |
Amount of substance | Mole |

Answer to Problem 1.1P
Units for the electric power as the combination of fundamental S. I. units is -
Explanation of Solution
Given Information:
The given quantity is Electric Power.
- Electric power is defined as the rate at which electrical energy is transferred by a circuit.
- SI unit of Electric Power − Watt
But watt is not a fundamental unit, so it has to be converted into fundamental units as following-
Electric Power =
Therefore, unit of electric power =watt =
=
Interpretation:
The units for the electric charge as the combination of fundamental S. I. units should be determined.
Concept Introduction:
SI stands for International System of units.
SI defines 7 units of different quantities as the basic units from which all other SI units are derived. These basic units are:
Quantity | Unit |
Mass | Kilogarm (Kg) |
Length | Metre (m) |
Time | Second (s) |
Electric current | Ampere (A) |
Temperature | Kelvin (K) |
Luminous intensity | Candela |
Amount of substance | Mole |

Answer to Problem 1.1P
Units for the electric charge as the combination of fundamental S. I. units is -
Explanation of Solution
Given Information:
The given quantity is Electric Charge.
- It is a physical property which enables the substance to experience a force in the magnetic field. Its SI unit is Coulomb (C), but it is also not a fundamental unit. Thus it is need to be converted into fundamental units.
1 coulomb = 1 ampere-second.
Therefore, unit of electric charge =
Interpretation:
The units for the electric potential difference as the combination of fundamental S. I. units should be determined.
Concept Introduction:
SI stands for International System of units.
SI defines 7 units of different quantities as the basic units from which all other SI units are derived. These basic units are:
Quantity | Unit |
Mass | Kilogarm (Kg) |
Length | Metre (m) |
Time | Second (s) |
Electric current | Ampere (A) |
Temperature | Kelvin (K) |
Luminous intensity | Candela |
Amount of substance | Mole |

Answer to Problem 1.1P
Units for the electric potential difference as the combination of fundamental S. I. units is -
Explanation of Solution
Given Information:
The given quantity is Electric Potential Difference.
- It is the amount of work done in carrying a charge from one point to another in an electric field. Its SI unit is Volt (V).
Therefore, unit of electric potential difference = V =
Interpretation:
The units for the electric resistance as the combination of fundamental S. I. units should be determined.
Concept Introduction:
SI stands for International System of units.
SI defines 7 units of different quantities as the basic units from which all other SI units are derived. These basic units are:
Quantity | Unit |
Mass | Kilogarm (Kg) |
Length | Metre (m) |
Time | Second (s) |
Electric current | Ampere (A) |
Temperature | Kelvin (K) |
Luminous intensity | Candela |
Amount of substance | Mole |

Answer to Problem 1.1P
Units for the electric resistance as the combination of fundamental S. I. units is -
Explanation of Solution
Given Information:
The given quantity is Electric Resistance.
- Electric Resistance is the measure of the difficultyto pass an electric current through the substance. It unit is Ohms (O).
In fundamental units, its unit =
Interpretation:
The units for the electric capacitance as the combination of fundamental S. I. units should be determined.
Concept Introduction:
SI stands for International System of units.
SI defines 7 units of different quantities as the basic units from which all other SI units are derived. These basic units are:
Quantity | Unit |
Mass | Kilogarm (Kg) |
Length | Metre (m) |
Time | Second (s) |
Electric current | Ampere (A) |
Temperature | Kelvin (K) |
Luminous intensity | Candela |
Amount of substance | Mole |

Answer to Problem 1.1P
Units for the electric capacitance as the combination of fundamental S. I. units is -
Explanation of Solution
Given Information:
The given quantity is Electric Capacitance.
- Electric Capacitance is the ratio of the change in electric charge in the system to the change in voltage. Its SI unit is Farad which is not a fundamental SI unit.
In fundamental units, its unit
Conclusion:
Unit for the Electric Capacitance as the combination of fundamental S. I. units is
Want to see more full solutions like this?
Chapter 1 Solutions
Loose Leaf For Introduction To Chemical Engineering Thermodynamics
- Natural gas having a specific gravity relative to air of 0.60 and a viscosity of 0.011 cP is flowing through a 6-in. Schedule 40 pipe in which is installed a standard sharp-edged orifice equipped with flange taps. The gas is at 100°F and 20lb/in? abs at the upstream tap. The manometer reading is 46.3 in. of water at 60°F. The ratio of specific heats for natural gas is 1.30. The diameter of the orifice is 2.00 in. Calculate the rate of flow of gas through the line in cubic feet.arrow_forwardصورة من s94850121arrow_forward11:01 ☑ canvas.ucsd.edu 口 : ... Page 1 > of 2 Q - ZOOM + 4. Consider the two separate sets of measured data for a silt-loam soil measured by Mualem (1976): (1) suction versus water content, and (2) suction versus relative permeability of unsaturated soil, k/ks. Assume that 0s 0.396, 0res = 0.131, and Ks=5.74×10-7 m/s. a. Using the method of least squares in Excel, compute the best-fit values for αNG (kPa¹) and nvg for the van Genuchten (1980) relationship for data set # 1 (assume m = 1-1/nvG). See the example spreadsheet in the homework folder under the files section of Canvas for help in performing this calculation. b. Repeat part (a) and estimate the λ and ac parameters for the Brooks and Corey (1964) SWRC for data set #1. Note that you may need to include an "if" statement at the air entry suction. c. Plot the data for the SWRC versus the fitted van Genuchten (1980) and Brooks and Corey (1964) curves. Which relationship matches the capillary pressure data better (BC or VG)? Explain…arrow_forward
- the answer is shown but i dont know how to get to itarrow_forward1. (20 points) Steam (6000 kg/h, 10 bar, 400°C) is passed through an adiabatic turbine that drives a shaft to generate power. The steam leaving the turbine is at 0.5 bar and passes to a chiller where heat is removed at the rate of 1.25 x 107 kJ/h. Saturated liquid leaves the chiller at 0.5 bar. (a) How much work (kW) is produced in the turbine? (b) What is the quality of steam leaving the turbine? Sometimes, steam produced is 'wet' in nature, and is composed of saturated water vapor and entrained water droplets. In such cases, quality is defined as the fraction of steam that is vapor.arrow_forwardWLV2 | Online teaching and × + w.com/ilrn/takeAssignment/takeCovalentActivity.do?locator-assignment-take A १ eq eq eq [Review Topics] [Referen Draw the structure of 3,3-dimethylbutanal in the window below. • In cases where there is more than one answer, just draw one. 985 + / $ Sn [ ] ChemDoodle ? req Submit Answer Retry Entire Group 8 more group attempts remaining req req Cengage Learning Cengage Technical Supportarrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





