Applied Fluid Mechanics
7th Edition
ISBN: 9780133414622
Author: UNTENER
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.18PP
In an attempt at a land speed record, a car travels
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
100
As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the
spring constant at time t is k(t) = t sin + N/m. If the mass-spring system has mass m = 2 kg and a
damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is
subjected to the harmonic external force f (t) = 100 cos 3t N. Find at least the first four nonzero terms in
a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement:
• Analytically (hand calculations)
Creating Simulink Model
Plot solutions for first two, three and four non-zero terms as well as the Simulink solution on the same graph
for the first 15 sec. The graph must be fully formatted by code.
Two springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set
in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its
equilibrium position a distance 2 m and then releasing both masses. if m₁ = m² = 1 kg, k₁ = 3 N/m and
k₂ = 2 N/m.
(y₁ = 0)
www
k₁ = 3
Jm₁ = 1
k2=2
www
(Net change in
spring length
=32-31)
(y₂ = 0)
m₂ = 1
32
32
System in
static
equilibrium
System in
motion
Figure Q3 - Coupled mass-spring system
Determine the equations of motion y₁ (t) and y₂(t) for the two masses m₁ and m₂ respectively:
Analytically (hand calculations)
Using MATLAB Numerical Functions (ode45)
Creating Simulink Model
Produce an animation of the system for all solutions for the first minute.
Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank
A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each
tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of
6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If,
initially, tank A contains pure water and tank B contains 20 kg of salt.
A
6 L/min
0.2 kg/L
x(t)
100 L
4 L/min
x(0) = 0 kg
3 L/min
1 L/min
B
y(t)
100 L
y(0) = 20 kg
2 L/min
Figure Q1 - Mixing problem for interconnected tanks
Determine the mass of salt in each tank at time t≥ 0:
Analytically (hand calculations)
Using MATLAB Numerical Functions (ode45)
Creating Simulink Model
Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.
Chapter 1 Solutions
Applied Fluid Mechanics
Ch. 1 - 1.1 Convert 1250 millimeters to meters.Ch. 1 - Convert 1600 square millimeters to square metersCh. 1 - Convert 3.65x103 cubic millimeters to cubic metersCh. 1 - Convert 2.05 square meters to square millimetersCh. 1 - Convert 0.391 cubic meters to cubic millimetersCh. 1 - Convert 55.0 gallons to cubic metersCh. 1 - An automobile is moving at 80 kilometers per hour,...Ch. 1 - Convert a length of 25.3 feet to metersCh. 1 - Convert a distance of 1.36 miles to meters.Ch. 1 - Convert a length of 3.65 inches to millimeters.
Ch. 1 - Convert a distance of 2580 feet to meters.Ch. 1 - Convert a volume of 480 cubic feet to cubic...Ch. 1 - Convert a volume of 7390 cubic centimeters to...Ch. 1 - Convert a volume of 6.35 liters to cubic nneters.Ch. 1 - Convert 6.0 feet per second to meters per secondCh. 1 - Convert 2500 cubic feet per minute to cubic meters...Ch. 1 - A car travels 0.50 km in 10.6 s. Calculate its...Ch. 1 - In an attempt at a land speed record, a car...Ch. 1 - A car travels 1000 ft in 14 s. Calculate its...Ch. 1 - In an attempt at a land speed record, a car...Ch. 1 - A body starting from rest with constant...Ch. 1 - A body starting from rest with constant...Ch. 1 - A body starting from rest with constant...Ch. 1 - A body starting from rest with constant...Ch. 1 - The formula for kinetic energy is KE=mv2, where m...Ch. 1 - The formula for kinetic energy is KE=12mv2, where...Ch. 1 - The formula for kinetic energy is KE=12mv2, where...Ch. 1 - The formula for kinetic energy is KE=12mv2, where...Ch. 1 - The formula for kinetic energy is KE=12mv2, where...Ch. 1 - The formula for kinetic energy is KE=12mv2 where m...Ch. 1 - The formula for kinetic energy is KE=12mv2, where...Ch. 1 - The formula for kinetic energy is KE=12mv2, where...Ch. 1 - The formula for kinetic energy is KE=12mv2, where...Ch. 1 - The formula for kinetic energy is KE=12mv2, where...Ch. 1 - The formula for kinetic energy is KE=12mv2, where...Ch. 1 - The formula for kinetic energy is where m = mass...Ch. 1 - The formula for kinetic energy is KE=12mv2, where...Ch. 1 - The formula for kinetic energy is KE=12mv2, where...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - One measure of a baseball pitcher's performance is...Ch. 1 - Compute the pressure change required to cause a...Ch. 1 - Compute the pressure change required to cause a...Ch. 1 - Compute the pressure change required to cause a...Ch. 1 - For the conditions described in Problem 1.59...Ch. 1 - A certain hydraulic system operates at 3000 psi....Ch. 1 - A certain hydraulic system operates at 20.0 MPa....Ch. 1 - A measure of the stiffness of a linear actuator...Ch. 1 - 1.64 Repeat Problem 1.63 but change the length of...Ch. 1 - Repeat Problem 1.6319 but change the cylinder...Ch. 1 - Using the results of Problems 1.63-1.65, generate...Ch. 1 - Calculate the mass of a can of oil if it weighs...Ch. 1 - Calculate the mass of a tank of gasoline if it...Ch. 1 - '1.69 Calculate the weight of 1m3 of kerosene if...Ch. 1 - Calculate the weight of a jar of castor oil if it...Ch. 1 - Calculate the mass of 1 gal of oil if it weighs...Ch. 1 - Calculate the mass of 1ft3 of gasoline if it...Ch. 1 - Calculate the weight of 1ft3 of kerosene if it has...Ch. 1 - Calculate the weight of 1 gal of water if it has a...Ch. 1 - Assume that a man weighs 160 lb (force) Compute...Ch. 1 - In the United States, hamburger and other meats...Ch. 1 - The metric ton is 1000 kg (mass). Compute the...Ch. 1 - Convert the force found in Problem 1.77 to lb.Ch. 1 - Determine your weight in lb and N and your mass in...Ch. 1 - The specific gravity of benzene is 0.876....Ch. 1 - Air at 16 C and standard atmospheric pressure has...Ch. 1 - Carbon dioxide has a density of 1.964kg/m3 at 0 C....Ch. 1 - A certain medium lubricating oil has a specific...Ch. 1 - At 100 C mercury has a specific weight of...Ch. 1 - A cylindrical can 150 mm in diameter is filled to...Ch. 1 - Glycerin has a specific gravity of 1.258. How much...Ch. 1 - The fuel tank of an automobile holds 0.095m3. If...Ch. 1 - The density of muriatic acid is 1200 kg / m3...Ch. 1 - Liquid ammonia has a specific gravity of 0.826....Ch. 1 - Vinegar has a density of 1080 kg / m3 Calculate...Ch. 1 - Methyl alcohol has a specific gravity of 0.789....Ch. 1 - A cylindrical container is 150 mm in diameter and...Ch. 1 - A storage vessel for gasoline ( sg=0.68 ) is a...Ch. 1 - What volume of mercury (sg = 13.54) would weigh...Ch. 1 - A rock has a specific gravity of 2.32 and a volume...Ch. 1 - The specific gravity of benzene is 0.876....Ch. 1 - Air at 59 F and standard atmospheric pressure has...Ch. 1 - Carbon dioxide has a density of 0.003 81 slug/ft3...Ch. 1 - A certain medium lubricating oil has a specific...Ch. 1 - At 212F mercury has a specific weight of 834...Ch. 1 - One gallon of a certain fuel oil weighs 7.50 lb....Ch. 1 - Glycerin has a specific gravity of 1.258. How much...Ch. 1 - The fuel tank of an automobile holds 25.0 gal. If...Ch. 1 - The density of muriatic acid is 1.20 g/cm3....Ch. 1 - Liquid ammonia has a specific gravity of 0.826....Ch. 1 - Vinegar has a density of 1.08 g/cm3. Calculate its...Ch. 1 - Alcohol has a specific gravity of 0.79. Calculate...Ch. 1 - A cylindrical container has a 6.0-in diameter and...Ch. 1 - A storage vessel for gasoline (sg = 0.68) is a...Ch. 1 - How many gallons of mercury (sg = 13.54) would...Ch. 1 - A rock has a specific gravity of 2.32 and a volume...Ch. 1 - A village of 75 people desires a tank to store a...Ch. 1 - A cylindrical tank has a diameter of 38 in with...Ch. 1 - What is the required rate, in N/min, to empty a...Ch. 1 - An empty tank measuring 1.5 m by 2.5 m on the...Ch. 1 - A tank that is 2 ft in diameter and 18 in tall is...Ch. 1 - A standard pump design can be upgraded to higher...Ch. 1 - What is the annual cost to run a 2 HP system if it...Ch. 1 - Determine the displacement, in liters, for one...Ch. 1 - Determine the flow rate, in m3/hr, for another...Ch. 1 - At what speed, in rpm, does a single cylinder pump...Ch. 1 - Prob. 2CAEA
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Comprehension Check 7-14
The power absorbed by a resistor can be given by P = I2R, where P is power in units of...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled ...
Mechanics of Materials (10th Edition)
Why is the study of database technology important?
Database Concepts (8th Edition)
Assume a telephone signal travels through a cable at two-thirds the speed of light. How long does it take the s...
Electric Circuits. (11th Edition)
CONCEPT QUESTIONS
15.CQ3 The ball rolls without slipping on the fixed surface as shown. What is the direction ...
Vector Mechanics for Engineers: Statics and Dynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5. Estimate the friction pressure gradient in a 10.15 cm bore unheated horizontal pipe for the following conditions: Fluid-propylene Pressure 8.175 bar Temperature-7°C Mass flow of liquid-2.42 kg/s. Density of liquid-530 kg/m³ Mass flow of vapour-0.605 kg/s. Density of vapour-1.48 kg/m³arrow_forwardDescribe the following HVAC systems. a) All-air systems b) All-water systems c) Air-water systems Graphically represent each system with a sketch.arrow_forwardTwo large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min 1 L/min B y(t) 100 L y(0) = 20 kg 2 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t≥ 0: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.arrow_forward
- ased on the corresponding mass flow rates (and NOT the original volumetric flow rates) determine: a) The mass flow rate of the mixed air (i.e., the combination of the two flows) leaving the chamber in kg/s. b) The temperature of the mixed air leaving the chamber. Please use PyscPro software for solving this question. Notes: For part (a), you will first need to find the density or specific volume for each state (density = 1/specific volume). The units the 'v' and 'a' are intended as subscripts: · kgv = kg_v = kgv = kilogram(s) [vapour] kga = kg_a =kga = kilogram(s) [air]arrow_forwardThe answers to this question s wasn't properly given, I need expert handwritten solutionsarrow_forwardI need expert handwritten solutions to this onlyarrow_forward
- Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min B y(t) 100 L y(0) = 20 kg 2 L/min 1 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t > 0: Analytically (hand calculations)arrow_forwardTwo springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m₂ = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. www.m k₁ = 3 (y₁ = 0). m₁ = 1 k2=2 (y₂ = 0) |m₂ = 1 Y2 y 2 System in static equilibrium (Net change in spring length =32-31) System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁(t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations)arrow_forward100 As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the spring constant at time t is k(t) = t sin N/m. If the mass-spring system has mass m = 2 kg and a damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is subjected to the harmonic external force f(t) = 100 cos 3t N. Find at least the first four nonzero terms in a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement: Analytically (hand calculations)arrow_forward
- this is answer to a vibrations question. in the last part it states an assumption of x2, im not sure where this assumption comes from. an answer would be greatly appreciatedarrow_forwardPlease answer with the sketches.arrow_forwardThe beam is made of elastic perfectly plastic material. Determine the shape factor for the cross section of the beam (Figure Q3). [Take σy = 250 MPa, yNA = 110.94 mm, I = 78.08 x 106 mm²] y 25 mm 75 mm I 25 mm 200 mm 25 mm 125 Figure Q3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction To Engg Mechanics - Newton's Laws of motion - Kinetics - Kinematics; Author: EzEd Channel;https://www.youtube.com/watch?v=ksmsp9OzAsI;License: Standard YouTube License, CC-BY