Concept explainers
Olympic Pole Vault The graph in Figure 7 indicates that in recent years the winning
Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when tire pole vault was a new event, there was much room for improvement in vaulters' performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records.
- (a) Use the data in Table 2 (page 141) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x = 0 to correspond to the year 1972. where this restricted data set begins.)
- (b) Find the regression line for the data in part (a).
- (c) Plot the data and the regression line on the same axes. Docs the regression line seem to provide a good model for the data?
(d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 141. Has this new regression line provided a better prediction than the line in Example 2?
Year | X | Height (m) |
1972 | 0 | 5.64 |
1976 | 4 | |
1980 | 8 | |
1984 | ||
1988 | ||
1992 | ||
1996 | ||
2000 | ||
2004 | ||
2008 |

Trending nowThis is a popular solution!

Chapter 1 Solutions
PRECALCULUS: MATHEMATICS FOR CALCULUS
- 6. The largest interval in which the solution of (cos t)y′′ +t^2y′ − (5/t)y = e^t/(t−3) , y(1) = 2, y′(1) = 0is guaranteed to exist by the Existence and Uniqueness Theorem is:A. (0, ∞) B. (π/2, 3) C. (0,π/2) D. (0, π) E. (0, 3)arrow_forward12. For the differential equation in the previous question, what is the correct form for a particularsolution?A. yp = Ae^t + Bt^2 B. yp = Ae^t + Bt^2 + Ct + DC. yp = Ate^t + Bt^2 D. yp = Ate^t + Bt^2 + Ct + D Previous differential equation y′′ − 4y′ + 3y = e^t + t^2arrow_forward16. The appropriate form for the particular solution yp(x) of y^(3) − y′′ − 2y′ = x^2 + e^2x isA. yp(x) = Ax^2 + Bx + C + De^2x B. yp(x) = Ax^3 + Bx^2 + Cx + Dxe^2xC. yp(x) = Ax^2 +Be^2x D. yp(x) = A+Be^2x +Ce^−x E. yp(x) = Ax^2 +Bx+C +(Dx+E)e^2xarrow_forward
- Distance Between Two Ships Two ships leave the same port at noon. Ship A sails north at 17 mph, and ship B sails east at 11 mph. How fast is the distance between them changing at 1 p.m.? (Round your answer to one decimal place.) 20.3 X mph Need Help? Read It Watch It SUBMIT ANSWERarrow_forwardpractice problem please help!arrow_forwardFind the first and second derivatives of the function. f(u) = √7 3u − 3 f'(u) 2 (7-34) (½) f"(u) = 9 4(7-3u) 32 X Need Help? Read It Watch It SUBMIT ANSWERarrow_forward
- 11. Consider the 2nd-order non-homogeneous differential equation y′′ − 4y′ + 3y = et + t2What is the complementary (or homogeneous) solution?A. yc = c1e^t + c2t^2 B. yc = c1e^−t + c2e^−3t C. yc = c1e^t + c2e^3t D. yc = c1e^t + c2e^−3tarrow_forward5. A trial solution for the non-homogeneous equation y′′ + y′ − 2y = e^x isA. Ae^x B. Ae^x+ Be^−2x C. Ae^x + Be^−x D. Axe^x E. None of these.arrow_forward14. Write u = - sint-cost in the form u = C cos(t - a) with C > 0 and 0 ? PAUSE Z X C VI B N Marrow_forward
- 19. If the method of undetermined coefficients is used, the form of a particular solution ofy^(4) − y = e^−t + 3 sin(t) isA. yp(t) = Ate^−t + B cos(t) + C sin(t)B. yp(t) = At^2e^−t + B cos(t) + C sin(t)C. yp(t) = Ate^−t + Bt cos(t) + Ct sin(t)D. yp(t) = At^2e^−t + Bt cos(t) + Ct sin(t)E. yp(t) = Ate^−t + Bt sin(t)arrow_forward15. A spring-mass system is governed by the differential equation 2x′′ + 72x = 100 sin(3ωt) .For what value of ω will resonance occur?A. 3 B. 6√2 C. 2 D. 10 E. No valuearrow_forwardQuestion 3. A manufacturer has modeled its yearly production function P (the value of its entire production, in millions of dollars) as a Cobb-Douglas function P(L, K) = 1.47L0.65 0.35 where L is the number of labor hours (in thousands) and K is the invested capital (in millions of dollars). ӘР Ət (a) Express the rate of change of production 07-2 in time, in terms of the rate of change of the labor force and the rate of change of the capital in time. (b) Suppose that when L = 30 and K = 8, the labor force is decreasing at a rate of 2000 labor hours per year and capital is increasing at a rate of 500,000 per year. What is the rate of change of production per year?arrow_forward
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill





