The force of gravity on an object (which we expenence as the object’s weight) varies inversely as the square of the distance from the center of the earth. Determine the force of gravity on an astronaut when he is at a height of 6000 km from the surface of the earth if he weighs 700 newtons (N) when on the surface of the earth The radius of the earth is 6.38 × 106 m. (If the astronaut is in orbit, he will float “weightlessly.” but gravity still acts on him—he and his spaceship appear weightless because they are falling freely m their orbit around the earth.)
Want to see the full answer?
Check out a sample textbook solutionChapter 0 Solutions
College Physics (10th Edition)
Additional Science Textbook Solutions
The Cosmic Perspective (8th Edition)
Essential University Physics: Volume 2 (3rd Edition)
College Physics
University Physics Volume 1
Conceptual Physical Science (6th Edition)
College Physics: A Strategic Approach (3rd Edition)
- Let gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardThe mean diameter of the planet Mercury is 4.88106m , and the acceleration due to gravity at its surface is 3.78m/s2 . Estimate the mass of this planet.arrow_forwardThe Scope and Scale of Physics Find the order of magnitude of the following physical quantities. (a) The mass of Earth’s atmosphere: 5.11018kg : (b) The mass of the Moon’s atmosphere: 25,000kg ; (c) The mass of Earth’s hydrosphere: 1.41021kg : (d) The mass of Earth: 5.971024kg : (e) The mass of the Moon: 7.341022kg : (f) The Earth-Moon distance (semimajor axis): 3.84108m : (g) The mean Earth-Sun distance: 1.51011m : (h) The equatorial radius of Earth: 6.38106m : (i) The mass of an electron: 9.111031kg : (j) The mass of a proton: 1.671027kg : (k) The mass of the Sun: 1.991030kg .arrow_forward
- On a planet whose radius is 1.2107m , the acceleration due to gravity is 18m/s2 . What is the mass of the planet?arrow_forwardVector B is 5.0 cm long and vector A is 4.0 cm long. Find the angle between these two vectors when |A+B|=3.0cm and |AB|=3.0cm .arrow_forwardThe acceleration due to gravity on the surface of a planet is three times as large as it is on the surface of Earth. The mass density of the planet is known to be twice that of Earth. What is the radius of this planet in terms of Earth’s radius?arrow_forward
- Calculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardA house is advertised as having 1 420 square feet under its roof. What is area in square meters? (a) 4 660 m2(b) 132 m2 (c) 158m2 (d) 132 m2 (e) 10.2m1arrow_forwardThe “mean” orbital radius listed for astronomical objects orbiting the Sun is typically not an integrated average but is calculated such that it gives the correct period when applied to the equation for circular orbits. Given that, what is the mean orbital radius in terms of aphelion and perihelion?arrow_forward
- The Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forwardAn object of mass m is located on the surface of a spherical planet of mass M and radius R. The escape speed from the planet does not depend on which of the following? (a) M (b) m (c) the density of the planet (d) R (e) the acceleration due to gravity on that planetarrow_forwardMath Review (a) Solve the equation 7.20 103 m/s = (4.20 103 m/s) ln (Mi/Mf) for the fraction Mi/Mf. (b) If Mi = 2.65 104 kg, calculate Mf.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill