Bartleby Sitemap - Textbook Solutions
All Textbook Solutions for Precalculus Enhanced with Graphing Utilities
84AYU85AYU86AYU87AYU88AYU89AYU90AYU91AYU92AYU93AYU94AYU95AYU96AYU97AYU98AYU99AYU100AYU101AYU102AYU103AYU104AYU105AYU106AYU107AYU108AYU109AYU110AYU111AYU112AYU113AYU114AYU115AYU116AYU117AYU118AYU119AYU120AYU121AYU122AYU123AYU124AYU125AYU126AYU127AYU128AYU129AYU130AYU131AYUIf a sequence { S n } converges to L , we call L the ______ of the sequence. a. limit b. series c. sum d. termIf a 1 , a 2 ,..., a n ,... is some collection of numbers, the expression k=1 a k = a 1 + a 2 + + a n + is called a( n ) _____ _____.3AYU4AYU5AYU6AYUIn Problems 5-28, determine whether each sequence converges or diverges. If it converges, find its limit. { b n }={ 5 n 2 4n+3 }In Problems 5-28, determine whether each sequence converges or diverges. If it converges, find its limit. { b n }={ n 2 n+3 }In Problems 5-28, determine whether each sequence converges or diverges. If it converges, find its limit. { b n }={ 2 n 2 4n+1 4 n 2 +5 }10AYU11AYUIn Problems 5-28, determine whether each sequence converges or diverges. If it converges, find its limit. { a n }={ 12 n 2 n 3 3n+1 }In Problems 5-28, determine whether each sequence converges or diverges. If it converges, find its limit. { s n }={ 3 n }In Problems 5-28, determine whether each sequence converges or diverges. If it converges, find its limit. { s n }={ 4 n }15AYU16AYU17AYUIn Problems 5-28, determine whether each sequence converges or diverges. If it converges, find its limit. { a n }={ 10+ 1 n }19AYUIn Problems 5-28, determine whether each sequence converges or diverges. If it converges, find its limit. { c n }={ 1+ ( 1 ) n n }21AYU22AYU23AYU24AYU25AYU26AYUIn Problems 5-28, determine whether each sequence converges or diverges. If it converges, find its limit. { s n }={ cos( n ) }In Problems 5-28, determine whether each sequence converges or diverges. If it converges, find its limit. { a n }={ sin( n 2 ) }In Problems 29-32, find the first five terms in the sequence of partial sums for each series. k=1 ( 1 3 ) k1In Problems 29-32, find the first five terms in the sequence of partial sums for each series. k=1 ( 1 4 ) k131AYUIn Problems 29-32, find the first five terms in the sequence of partial sums for each series. k=1 k 2