Bartleby Sitemap - Textbook Solutions
All Textbook Solutions for Precalculus Enhanced with Graphing Utilities
In Problems 11-20, simplify each trigonometric expression by following the indicated direction. Multiply sin 1+cos by 1cos 1cos .In Problems 11-20, simplify each trigonometric expression by following the indicated direction. Rewrite over a common denominator: sin+cos cos + cossin sinIn Problems 11-20, simplify each trigonometric expression by following the indicated direction. Rewrite over a common denominator: 1 1cos + 1 1+cos .In Problems 11-20, simplify each trigonometric expression by following the indicated direction. Multiply and simplify: ( sin+cos )( sin+cos )1 sincosIn Problems 11-20, simplify each trigonometric expression by following the indicated direction. Multiply and simplify: ( tan+1 )( tan+1 ) sec 2 tanIn Problems 11-20, simplify each trigonometric expression by following the indicated direction. Factor and simplify: 3 sin 2 +4sin+1 sin 2 +2sin+1In Problems 11-20, simplify each trigonometric expression by following the indicated direction. Factor and simplify: cos 2 1 cos 2 cosestablish each identity. secsin=tanestablish each identity. secsin=tanestablish each identity. 1+ tan 2 ( )= sec 2establish each identity. 1+ cot 2 ( )= csc 2establish each identity. cos( tan+cot )=cscestablish each identity. sin( cot+tan )=secestablish each identity. tanucotu cos 2 u= sin 2 uestablish each identity. sinucscu cos 2 u= sin 2 uestablish each identity. ( sec1 )( sec+1 )= tan 2establish each identity. ( csc1 )( csc+1 )= cot 2establish each identity. ( sec+tan )( sectan )=1establish each identity. ( csc+cot )( csccot )=1establish each identity. cos 2 ( 1+ tan 2 )=1establish each identity. ( 1 cos 2 )( 1+ cot 2 )=1establish each identity. ( sin+cos ) 2 + ( sincos ) 2 =2establish each identity. tan 2 cos 2 + cot 2 sin 2 =1establish each identity. sec 4 sec 2 = tan 4 + tan 2establish each identity. csc 4 csc 2 = cot 4 + cot 2establish each identity. secutanu= cosu 1+sinuestablish each identity. cscucotu= sinu 1+cosuestablish each identity. 3 sin 2 +4 cos 2 =3+ cos 2establish each identity. 9 sec 2 5 tan 2 =5+4 sec 2establish each identity. 1 cos 2 1+sin =sinestablish each identity. 1 sin 2 1cos =cosestablish each identity. 1+tan 1tan = cot+1 cot1establish each identity. csc1 csc+1 = 1sin 1+sinestablish each identity. sec csc + sin cos =2tanestablish each identity. csc1 cot = cot csc+1establish each identity. 1+sin 1sin = csc+1 csc1establish each identity. cos+1 cos1 = 1+sec 1secestablish each identity. 1sin cos + cos 1sin =2secestablish each identity. cos 1+sin + 1+sin cos =2secestablish each identity. sin sincos = 1 1cotestablish each identity. 1 sin 2 1+cos =cosestablish each identity. 1sin 1+sin = ( sectan ) 2establish each identity. 1cos 1+cos = (csccot) 2establish each identity. cos 1tan + sin 1cot =sin+cosestablish each identity. cot 1tan + tan 1cot =1+tan+cotestablish each identity. tan+ cos 1+sin =secestablish each identity. tan+ cos 1+sin =secestablish each identity. tan+sec1 tansec+1 =tan+secestablish each identity. sincos+1 sin+cos1 = sin+1 cosestablish each identity. tancot tan+cot = sin 2 cos 2establish each identity. seccos sec+cos = sin 2 1+ cos 2establish each identity. tanucotu tanu+cotu +1=2 sin 2 uestablish each identity. tanucotu tanu+cotu +2 cos 2 u=1establish each identity. sec+tan cot+cos =tansecestablish each identity. sec 1+sec = 1cos sin 2establish each identity. 1 tan 2 1+ tan 2 +1=2 cos 2establish each identity. 1 cot 2 1+ cot 2 +2 cos 2 =1establish each identity. seccsc seccsc =sincosestablish each identity. sin 2 tan cos 2 cot = tan 2establish each identity. seccos=sintanestablish each identity. tan+cot=seccscestablish each identity. 1 1sin + 1 1+sin =2 sec 2establish each identity. 1+sin 1sin 1sin 1+sin =4tansecestablish each identity. sec 1sin = 1+sin cos 3establish each identity. 1+sin 1sin = ( sec+tan ) 2establish each identity. ( sectan ) 2 +1 csc( sectan ) =2tanestablish each identity. sec 2 tan 2 +tan sec =sin+cosestablish each identity. sin+cos cos sincos sin =seccscestablish each identity. sin+cos sin cossin cos =seccscestablish each identity. sin 3 +co s 3 sin+cos =1sincosestablish each identity. sin 3 +co s 3 12 cos 2 = secsin tan1establish each identity. co s 2 sin 2 1 tan 2 = cos 2establish each identity. cos+sin sin 3 sin =cot+ cos 2establish each identity. (2co s 2 1) 2 cos 4 sin 4 =12 sin 2establish each identity. 12 cos 2 sincos =tancotestablish each identity. 1+sin+cos 1+sincos = 1+cos sinestablish each identity. 1+cos+sin 1+cossin =sec+tanestablish each identity. ( asin+bcos ) 2 + ( acosbsin ) 2 = a 2 + b 2establish each identity. ( 2asincos ) 2 + a 2 ( cos 2 sin 2 ) 2 = a 2establish each identity. tan+tan cot+cot =tantanestablish each identity. ( tan+tan )( 1cotcot )+( cot+cot )( 1tantan )=0establish each identity. ( sin+cos ) 2 +( cos+sin )( cossin )=2cos( sin+cos )establish each identity. ( sincos ) 2 +( cos+sin )( cossin )=2cos( sincos )establish each identity. ln| sec |=ln| cos |establish each identity. ln| tan |=ln| sin |ln| cos |establish each identity. ln| 1+cos |+ln| 1cos |=2ln| sin |establish each identity. ln| sec+tan |+ln| sectan |=0In Problems 101-104, show that the functions f and g are identically equal. f(x)=sinxtanxg(x)=secxcosxIn Problems 101-104, show that the functions f and g are identically equal. f( x )=cosxcotxg( x )=cscxsinxIn Problems 101-104, show that the functions f and g are identically equal. f( )= 1sin cos cos 1+sin g( )=0In Problems 101-104, show that the functions f and g are identically equal. f( )=tan+secg( )= cos 1sinShow that 16+16 tan 2 =4sec if 2 2 .Show that 9 sec 2 9 =3tan if 3 2 .Searchlights A searchlight at the grand opening of a new car dealership casts a spot of light on a wall located 75 meters from the searchlight. The acceleration r of the spot of light is found to be r =1200sec( 2 sec 2 1 ) . Show that this is equivalent to r =1200( 1+ sin 2 cos 3 ) .Optical Measurement Optical methods of measurement often rely on the interference of two light waves. If two light waves, identical except for a phase lag, are mixed together, the resulting intensity, or irradiance, is given by I t =4 A 2 ( csc1 )( sec+tan ) cscsec . Show that this is equivalent to I t = ( 2Acos ) 2 .Write a few paragraphs outlining your strategy for establishing identities.Write down the three Pythagorean Identities.Why do you think it is usually preferable to start with the side containing the more complicated expression when establishing an identity?Make up an identity that is not a basic identity.The distance d from the point ( 2,3 ) to the point ( 5,1 ) is ____ . (pp. 4-6)If sin= 4 5 and is in quadrant II, then cos= ________. (pp. 401-403)(a) sin 4 cos 3 = _____ . (pp. 382-385) (b) tan 4 sin 6 = _____ . (pp. 382-385)If sin= 4 5 , 3 2 then cos= ____ . (pp.401-403)cos( + )=coscos ___ sinsinsin( )=sincos ___ cossinTrue or False sin( + )=sin+sin+2sinsinTrue or False tan75 =tan30 +tan45True or False cos( 2 )=cosTrue or False If f( x )=sinxandg( x )=cosx , then g( + )=g( )g( )f( )f( )11AYU12AYU13AYU14AYU15AYU16AYU17AYU18AYU19AYU20AYU21AYU22AYUFind the exact value of each expression. sin 20 cos 10 +cos20 sin 10Find the exact value of each expression. sin 20 cos 80 cos20 sin 80Find the exact value of each expression. cos 70 cos 20 sin70 sin 20Find the exact value of each expression. cos 40 cos 10 +sin40 sin 10Find the exact value of each expression. tan 20 +tan25 1 tan20 tan25Find the exact value of each expression. tan 40 tan10 1 +tan40 tan10Find the exact value of each expression. sin 12 cos 7 12 cos 12 sin 7 12Find the exact value of each expression. cos 5 12 cos 7 12 sin 5 12 sin 7 12Find the exact value of each expression. cos 12 cos 5 12 +sin 5 12 sin 12Find the exact value of each expression. sin 18 cos 5 18 +cos 18 sin 5 18In Problems 35-40, find the exact value of each of the following under the given conditions: (a) sin( + ) (b) cos( + ) (c) sin( ) (d) tan( ) sin= 3 5 ,0 2 ;cos= 2 5 5 , 2 0In Problems 35-40, find the exact value of each of the following under the given conditions: (a) sin( + ) (b) cos( + ) (c) sin( ) (d) tan( ) cos= 5 5 ,0 2 ;sin= 4 5 , 2 0In Problems 35-40, find the exact value of each of the following under the given conditions: (a) sin( + ) (b) cos( + ) (c) sin( ) (d) tan( ) tan= 4 3 , 2 ;cos= 1 2 ,0 2In Problems 35-40, find the exact value of each of the following under the given conditions: (a) sin( + ) (b) cos( + ) (c) sin( ) (d) tan( ) tan= 5 12 , 3 2 ;sin= 1 2 , 3 2In Problems 35-40, find the exact value of each of the following under the given conditions: (a) sin( + ) (b) cos( + ) (c) sin( ) (d) tan( ) sin= 5 13 , 3 2 ;tan= 3 , 2In Problems 35-40, find the exact value of each of the following under the given conditions: (a) sin( + ) (b) cos( + ) (c) sin( ) (d) tan( ) cos= 1 2 , 2 0;sin= 1 3 ,0 2If sin= 1 3 , in quadrant II, find the exact value of: (a) cos (b) sin( + 6 ) (c) cos( 3 ) (d) tan( + 4 )If cos= 1 4 , in quadrant IV, find the exact value of: (a) sin (b) sin( 6 ) (c) cos( + 3 ) (d) tan( 4 )In problems 43-48, use the figures to evaluate each function if f( x )=sinx,g( x )=cosx,h( x )=tanx . f( + )In problems 43-48, use the figures to evaluate each function if f( x )=sinx,g( x )=cosx,h( x )=tanx . g( + )In problems 43-48, use the figures to evaluate each function if f( x )=sinx,g( x )=cosx,h( x )=tanx . g( )In problems 43-48, use the figures to evaluate each function if f( x )=sinx,g( x )=cosx,h( x )=tanx . f( )In problems 43-48, use the figures to evaluate each function if f( x )=sinx,g( x )=cosx,h( x )=tanx . h( + )In problems 43-48, use the figures to evaluate each function if f( x )=sinx,g( x )=cosx,h( x )=tanx . h( )establish each identify. sin( 2 + )=cosestablish each identify. cos( 2 + )=sinestablish each identify. sin( )=sinestablish each identify. cos( )=cosestablish each identify. sin( + )=sinestablish each identify. cos( + )=cosestablish each identify. tan( )=tanestablish each identify. tan( 2 )=tanestablish each identify. sin( 3 2 + )=cosestablish each identify. cos( 3 2 + )=sinestablish each identify. sin( + )+sin( )=2sincosestablish each identify. cos( + )+cos( )=2coscosestablish each identify. sin( + ) sincos =1+cottanestablish each identify. sin( + ) coscos =tan+tanestablish each identify. cos( + ) coscos =1tantanestablish each identify. cos( ) sincos =cot+tanestablish each identify. sin( + ) sin( ) = tan+tan tantanestablish each identify. cos( + ) cos( ) = 1tantan 1+tantanestablish each identify. cot( + )= cotcot1 cot+cotestablish each identify. cot( )= cotcot+1 cotcotestablish each identify. sec( + )= csccsc cotcot1establish each identify. sec( )= secsec 1+tantanestablish each identify. sin( )sin( + )= sin 2 sin 2establish each identify. cos( )cos( + )= cos 2 sin 2establish each identify. sin( +k )= ( 1 ) k sin,k any integerestablish each identify. cos( +k )= ( 1 ) k cos,k any integerIn problems 75-86, find the exact value of each expression. sin( sin 1 1 2 + cos 1 0 )In problems 75-86, find the exact value of each expression. sin( sin 1 3 2 + cos 1 1 )In problems 75-86, find the exact value of each expression. sin[ sin 1 3 5 cos 1 ( 4 5 ) ]In problems 75-86, find the exact value of each expression. sin[ sin 1 ( 4 5 ) tan 1 3 4 ]In problems 75-86, find the exact value of each expression. cos( ta n 1 4 3 +cos 1 5 13 )In problems 75-86, find the exact value of each expression. cos[ tan 1 5 12 sin 1 ( 3 5 ) ]In problems 75-86, find the exact value of each expression. cos( sin 1 5 13 tan 1 3 4 )In problems 75-86, find the exact value of each expression. cos( tan 1 4 3 +cos 1 12 13 )In problems 75-86, find the exact value of each expression. tan( sin 1 3 5 + 6 )In problems 75-86, find the exact value of each expression. tan( 4 cos 1 3 5 )In problems 75-86, find the exact value of each expression. tan( sin 1 4 5 + cos 1 1 )In problems 75-86, find the exact value of each expression. tan( cos 1 4 5 +sin 1 1 )In Problems 87-92, write each trigonometric expression as an algebraic expression containing UandV . Give the restrictions required on UandV . cos( cos 1 u+ sin 1 v )In Problems 87-92, write each trigonometric expression as an algebraic expression containing UandV . Give the restrictions required on UandV . sin( sin 1 u cos 1 v )In Problems 87-92, write each trigonometric expression as an algebraic expression containing UandV . Give the restrictions required on UandV . sin( tan 1 u sin 1 v )In Problems 87-92, write each trigonometric expression as an algebraic expression containing UandV . Give the restrictions required on UandV . cos( tan 1 u +tan 1 v )In Problems 87-92, write each trigonometric expression as an algebraic expression containing UandV . Give the restrictions required on UandV . tan( sin 1 u cos 1 v )In Problems 87-92, write each trigonometric expression as an algebraic expression containing UandV . Give the restrictions required on UandV . sec( tan 1 u +cos 1 v )In problems 93-98, solve each equation on the interval 02 . sin 3 cos=1In problems 93-98, solve each equation on the interval 02 . 3 sin+cos=1In problems 93-98, solve each equation on the interval 02 . sin+cos= 2In problems 93-98, solve each equation on the interval 02 . sincos= 2In problems 93-98, solve each equation on the interval 02 . tan+ 3 =secIn problems 93-98, solve each equation on the interval 02 . cot+csc= 3Show that sin 1 v+ cos 1 v= 2 .Show that tan 1 v+ cot 1 v= 2 .Show that tan 1 ( 1 v )= 2 tan 1 v , if v0 .Show that cot 1 e v =tan 1 e v .Show that sin( sin 1 v+ cos 1 v )=1 .Show that cos( sin 1 v+ cos 1 v )=0 .Calculus Show that the difference quotient for f( x )=sinx is given by f( x+h )f( x ) h = sin( x+h )sinx h =cosx sinh h sinx 1cosh hCalculus Show that the difference quotient for f( x )=cosx is given by f( x+h )f( x ) h = cos( x+h )cosx h =sinx sinh h cosx 1cosh hOne, Two, Three (a) Show that tan( tan 1 1+ tan 1 2+ tan 1 3 )=0 . (b) Conclude from part (a) that tan 1 1+ tan 1 2+ tan 1 3= Source: College Mathematics Journal, Vol. 37, No. 3. May 2006Electric Power In an alternating current (ac) circuit, the instantaneous power p at time t is given by p( t )= V m I m cos sin 2 ( t ) V m I m sinsin( t )cos( t ) Show that this is equivalent to p( t )= V m I m sin( t )sin( t )107AYUIf ++= 180 andcot=cot+cot+cot0 90 show that sin 3 =sin( )sin( )sin( )If tan=x+1andtan=x1 , show that 2cot( )= x 2Discuss the following derivation: tan( + 2 )= tan+tan 2 1tantan 2 = tan tan 2 +1 1 tan 2 tan = 0+1 0tan = 1 tan =cot Can you justify each step?Explain why formula (7) cannot be used to show that tan( 2 )=cot Establish this identity by using formulas ( 3a )and( 3b ) .cos( 2 )= cos 2 =1=1sin 2 2 = 2tan 2 = 1cosTrue or False tan( 20 )= 2tan 1 tan 2True or False sin( 2 ) has two equivalent forms: 2sincos and si n 2 co s 2True or False tan( 2 )+tan( 2 )=tan( 4 )In Problems 9-20, use the information given about the angle , 02 , to find the exact value of: (a) sin( 2 ) (b) cos(2) (c) sin 2 (d) cos 2 (e) tan( 2 ) (f) tan 2 sin= 3 5 , 0 2In Problems 9-20, use the information given about the angle , 02 , to find the exact value of: (a) sin( 2 ) (b) cos(2) (c) sin 2 (d) cos 2 (e) tan( 2 ) (f) tan 2 cos= 3 5 , 0 2In Problems 9-20, use the information given about the angle , 02 , to find the exact value of: (a) sin( 2 ) (b) cos(2) (c) sin 2 (d) cos 2 (e) tan( 2 ) (f) tan 2 tan= 4 3 , 3 2In Problems 9-20, use the information given about the angle , 02 , to find the exact value of: (a) sin( 2 ) (b) cos(2) (c) sin 2 (d) cos 2 (e) tan( 2 ) (f) tan 2 tan= 1 2 , 3 2In Problems 9-20, use the information given about the angle , 02 , to find the exact value of: (a) sin( 2 ) (b) cos(2) (c) sin 2 (d) cos 2 (e) tan( 2 ) (f) tan 2 cos= 6 3 , 2In Problems 9-20, use the information given about the angle , 02 , to find the exact value of: (a) sin( 2 ) (b) cos(2) (c) sin 2 (d) cos 2 (e) tan( 2 ) (f) tan 2 sin= 3 3 , 3 2 2In Problems 9-20, use the information given about the angle , 02 , to find the exact value of: (a) sin( 2 ) (b) cos(2) (c) sin 2 (d) cos 2 (e) tan( 2 ) (f) tan 2 sec=3 , sin0In Problems 9-20, use the information given about the angle , 02 , to find the exact value of: (a) sin( 2 ) (b) cos(2) (c) sin 2 (d) cos 2 (e) tan( 2 ) (f) tan 2 csc= 5 , cos0In Problems 9-20, use the information given about the angle , 02 , to find the exact value of: (a) sin( 2 ) (b) cos(2) (c) sin 2 (d) cos 2 (e) tan( 2 ) (f) tan 2 cot=2 , sec0In Problems 9-20, use the information given about the angle , 02 , to find the exact value of: (a) sin( 2 ) (b) cos(2) (c) sin 2 (d) cos 2 (e) tan( 2 ) (f) tan 2 sec=2 , csc0In Problems 9-20, use the information given about the angle , 02 , to find the exact value of: (a) sin( 2 ) (b) cos(2) (c) sin 2 (d) cos 2 (e) tan( 2 ) (f) tan 2 tan=3 , sin0In Problems 9-20, use the information given about the angle , 02 , to find the exact value of: (a) sin( 2 ) (b) cos(2) (c) sin 2 (d) cos 2 (e) tan( 2 ) (f) tan 2 cot=3 , cos0In Problems 21-30, use the Half-angle Formulas to find the exact value of each expression. sin 22.5In Problems 21-30, use the Half-angle Formulas to find the exact value of each expression. cos 22.5In Problems 21-30, use the Half-angle Formulas to find the exact value of each expression. tan 7 8In Problems 21-30, use the Half-angle Formulas to find the exact value of each expression. tan 9 8In Problems 21-30, use the Half-angle Formulas to find the exact value of each expression. cos 165In Problems 21-30, use the Half-angle Formulas to find the exact value of each expression. sin 195In Problems 21-30, use the Half-angle Formulas to find the exact value of each expression. sec 15 8In Problems 21-30, use the Half-angle Formulas to find the exact value of each expression. csc 7 8In Problems 21-30, use the Half-angle Formulas to find the exact value of each expression. sin( 8 )In Problems 21-30, use the Half-angle Formulas to find the exact value of each expression. cos( 3 8 )In Problems 31-42, use the figures to evaluate each function, given that f( x )=sinx , g( x )=cosx , and h( x )=tanx f( 2 )In Problems 31-42, use the figures to evaluate each function, given that f( x )=sinx , g( x )=cosx , and h( x )=tanx g( 2 )In Problems 31-42, use the figures to evaluate each function, given that f( x )=sinx , g( x )=cosx , and h( x )=tanx g( 2 )In Problems 31-42, use the figures to evaluate each function, given that f( x )=sinx , g( x )=cosx , and h( x )=tanx f( 2 )In Problems 31-42, use the figures to evaluate each function, given that f( x )=sinx , g( x )=cosx , and h( x )=tanx h( 2 )In Problems 31-42, use the figures to evaluate each function, given that f( x )=sinx , g( x )=cosx , and h( x )=tanx h( 2 )In Problems 31-42, use the figures to evaluate each function, given that f( x )=sinx , g( x )=cosx , and h( x )=tanx g( 2 )In Problems 31-42, use the figures to evaluate each function, given that f( x )=sinx , g( x )=cosx , and h( x )=tanx f( 2 )In Problems 31-42, use the figures to evaluate each function, given that f( x )=sinx , g( x )=cosx , and h( x )=tanx f( 2 )In Problems 31-42, use the figures to evaluate each function, given that f( x )=sinx , g( x )=cosx , and h( x )=tanx g( 2 )In Problems 31-42, use the figures to evaluate each function, given that f( x )=sinx , g( x )=cosx , and h( x )=tanx h( 2 )In Problems 31-42, use the figures to evaluate each function, given that f( x )=sinx , g( x )=cosx , and h( x )=tanx h( 2 )Show that sin 4 = 3 8 1 2 cos( 2 )+ 1 8 cos( 4 )Show that sin( 4 )=( cos )( 4sin8 sin 3 ) .Develop a formula for cos( 3 ) as a third-degree polynomial in the variable cos .Develop a formula for cos( 4 ) as a third-degree polynomial in the variable cos .Find an expression for sin( 5 ) as a fifth-degree polynomial in the variable sin .Find an expression for cos( 5 ) as a fifth-degree polynomial in the variable cos .cos 4 sin 4 =cos( 2 )establish each identify. cot-tan cot+tan =cos( 2 )establish each identify. cot( 2 )= cot 2 -1 2cotestablish each identify. cot( 2 )= 1 2 ( cot-tan )establish each identify. sec( 2 )= sec 2 2- sec 2establish each identify. csc( 2 )= 1 2 seccscestablish each identify. cos 2 ( 2u ) -sin 2 ( 2u )=cos( 4u )establish each identify. ( 4sinucosu )( 1 -2sin 2 u )=sin( 4u )establish each identify. cos( 2 ) 1+sin( 2 ) = cot-1 cot+1establish each identify. sin 2 cos 2 = 1 8 [ 1-cos( 4 ) ]establish each identify. sec 2 2 = 2 1+cosestablish each identify. csc 2 2 = 2 1-cosestablish each identify. cot 2 v 2 = secv+1 secv-1establish each identify. tan v 2 =cscv-cotvestablish each identify. cos= 1 -tan 2 2 1 +tan 2 2establish each identify. 1- 1 2 sin( 2 )= sin 3 +cos 3 sin+cosestablish each identify. sin( 3 ) sin cos( 3 ) cos =2establish each identify. cos+sin cossin cossin cos+sin =2tan( 2 )establish each identify. tan( 3 )= 3tan tan 3 13 tan 2establish each identify. tan+tan( + 120 )+tan( + 240 )=3tan( 3 )establish each identify. ln| sin |= 1 2 ( ln| 1cos( 2 ) |ln2 )establish each identify. ln| cos |= 1 2 ( ln| 1+cos( 2 ) |ln2 )solve each equation on the interval 02 . cos( 2 )+6 sin 2 =4solve each equation on the interval 02 . cos( 2 )=22 sin 2solve each equation on the interval 02 . cos( 2 )=cossolve each equation on the interval 02 . sin( 2 )=cossolve each equation on the interval 02 . sin( 2 )+sin( 4 )=0solve each equation on the interval 02 . cos( 2 )+cos( 4 )=0solve each equation on the interval 02 . 3sin=cos( 2 )solve each equation on the interval 02 . cos( 2 )+5cos+3=0solve each equation on the interval 02 . tan( 2 )+2sin=0solve each equation on the interval 02 . tan( 2 )+2cos=0find the exact value of each expression. sin( 2 sin 1 1 2 )find the exact value of each expression. sin[ 2 sin 1 3 2 ]find the exact value of each expression. cos( 2 sin 1 3 5 )find the exact value of each expression. cos( 2 cos 1 4 5 )find the exact value of each expression. tan[ 2 cos 1 ( 3 5 ) ]find the exact value of each expression. tan( 2 tan 1 3 4 )find the exact value of each expression. sin( 2 cos 1 4 5 )find the exact value of each expression. cos[ 2 tan 1 ( 4 3 ) ]find the exact value of each expression. sin 2 ( 1 2 cos 1 3 5 )find the exact value of each expression. cos 2 ( 1 2 sin 1 3 5 )find the exact value of each expression. sec( 2 tan 1 3 4 )find the exact value of each expression. csc[ 2 sin 1 ( 3 5 ) ]