Z%3f(x, y)%3D 5(x^3)(y^2)-7x^2 +8y-4. Find the value of the second and mixed second partial derivatives at (2, 3); that is find frx(2,3), fyy(2,3), fxy(2,3). _fxx D fyy = fxy%= %3D %3D %3D
Z%3f(x, y)%3D 5(x^3)(y^2)-7x^2 +8y-4. Find the value of the second and mixed second partial derivatives at (2, 3); that is find frx(2,3), fyy(2,3), fxy(2,3). _fxx D fyy = fxy%= %3D %3D %3D
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Second Partial Derivatives of the Function
Given the function:
\[ Z = f(x, y) = 5(x^3)(y^2) - 7x^2 + 8y - 4 \]
We are to find the value of the second and mixed second partial derivatives at the point (2, 3). Specifically, we need to determine \( f_{xx}(2,3) \), \( f_{yy}(2,3) \), and \( f_{xy}(2,3) \).
### Step-by-Step Solution:
#### 1. Compute \( f_{xx} \):
To find \( f_{xx} \), we first need the first partial derivative of \( f \) with respect to \( x \), \( f_x \):
\[ f_x = \frac{\partial}{\partial x} [5(x^3)(y^2) - 7x^2 + 8y - 4] \]
\[ f_x = 5(y^2) \frac{\partial}{\partial x} (x^3) - 7 \frac{\partial}{\partial x} (x^2) + 8 \frac{\partial}{\partial x} (y) - 4 \frac{\partial}{\partial x} (1) \]
\[ f_x = 5(y^2)(3x^2) - 7(2x) + 0 - 0 \]
\[ f_x = 15x^2 y^2 - 14x \]
Now, take the second partial derivative \( f_{xx} \):
\[ f_{xx} = \frac{\partial}{\partial x} (15x^2 y^2 - 14x) \]
\[ f_{xx} = 15(y^2) \frac{\partial}{\partial x} (x^2) - 14 \frac{\partial}{\partial x} (x) \]
\[ f_{xx} = 15(y^2)(2x) - 14 \]
\[ f_{xx} = 30xy^2 - 14 \]
Evaluate at the point (2, 3):
\[ f_{xx}(2,3) = 30(2)(3^2) - 14 \]
\[ f_{xx}(2,3) = 30(2)(9) - 14 \](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdd93d516-b23d-479f-a2e8-0184d486bfe0%2Faad1f3e4-d8ac-46c5-b38a-3777e0f09831%2Fgftoqsp.jpeg&w=3840&q=75)
Transcribed Image Text:### Second Partial Derivatives of the Function
Given the function:
\[ Z = f(x, y) = 5(x^3)(y^2) - 7x^2 + 8y - 4 \]
We are to find the value of the second and mixed second partial derivatives at the point (2, 3). Specifically, we need to determine \( f_{xx}(2,3) \), \( f_{yy}(2,3) \), and \( f_{xy}(2,3) \).
### Step-by-Step Solution:
#### 1. Compute \( f_{xx} \):
To find \( f_{xx} \), we first need the first partial derivative of \( f \) with respect to \( x \), \( f_x \):
\[ f_x = \frac{\partial}{\partial x} [5(x^3)(y^2) - 7x^2 + 8y - 4] \]
\[ f_x = 5(y^2) \frac{\partial}{\partial x} (x^3) - 7 \frac{\partial}{\partial x} (x^2) + 8 \frac{\partial}{\partial x} (y) - 4 \frac{\partial}{\partial x} (1) \]
\[ f_x = 5(y^2)(3x^2) - 7(2x) + 0 - 0 \]
\[ f_x = 15x^2 y^2 - 14x \]
Now, take the second partial derivative \( f_{xx} \):
\[ f_{xx} = \frac{\partial}{\partial x} (15x^2 y^2 - 14x) \]
\[ f_{xx} = 15(y^2) \frac{\partial}{\partial x} (x^2) - 14 \frac{\partial}{\partial x} (x) \]
\[ f_{xx} = 15(y^2)(2x) - 14 \]
\[ f_{xx} = 30xy^2 - 14 \]
Evaluate at the point (2, 3):
\[ f_{xx}(2,3) = 30(2)(3^2) - 14 \]
\[ f_{xx}(2,3) = 30(2)(9) - 14 \
Expert Solution

Step 1
We differentiate with respect to x twice, y will be treated as a constant.
Step 2
We differentiate with respect to y twice, x will be treated as a constant.
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning