Yummy Lunch Restaurant needs to decide the most profitable location for their business expansion. Marketing manager plans to use a multiple regression model to achieve their target. His model considers yearly revenue as the dependent variable. He found that number of people within 2KM (People), Mean household income(income), no of competitors and price as explanatory variables of company yearly revenue. The following is the descriptive statistics and regression output from Excel.       Revenue People Income Competitors Price             Mean 343965.68 5970.26 41522.96 2.8 5.68 Standard Error 5307.89863 139.0845281 582.1376385 0.142857 0.051030203 Median 345166.5 6032 41339.5 3 5.75 Mode #N/A 5917 #N/A 3 6 Standard Deviation 37532.51115 983.47613 4116.334718 1.010153 0.360838027 Sample Variance 1408689393 967225.2984 16944211.51 1.020408 0.130204082 Sum 17198284 298513 2076148 140 284 Count 50 50 50 50 50   SUMMARY OUTPUT                                   Regression Statistics               Multiple R 0.77               R Square A               Adjusted R Square B               Standard Error 25139.79               Observations 50.00                                 ANOVA                   df SS MS F Significance F       Regression C 40585376295 F H 3.0831E-08       Residual D 28440403984 G           Total E 69025780279                                 Coefficients Standard Error t Stat P-value   Intercept -68363.1524 78524.7251 -0.8706 0.3886   People 6.4394 3.7051 I 0.0891   Income 7.2723 0.9358 J 0.0000   Competitors -6709.4320 3818.5426 K 0.0857   Price 15968.7648 10219.0263 L 0.1251       Complete the missing entries from A to L in this output Derive the regression model What does the standard error of estimate tell you about the model?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question

Yummy Lunch Restaurant needs to decide the most profitable location for their business expansion. Marketing manager plans to use a multiple regression model to achieve their target. His model considers yearly revenue as the dependent variable. He found that number of people within 2KM (People), Mean household income(income), no of competitors and price as explanatory variables of company yearly revenue.

The following is the descriptive statistics and regression output from Excel.  

 

 

Revenue

People

Income

Competitors

Price

           

Mean

343965.68

5970.26

41522.96

2.8

5.68

Standard Error

5307.89863

139.0845281

582.1376385

0.142857

0.051030203

Median

345166.5

6032

41339.5

3

5.75

Mode

#N/A

5917

#N/A

3

6

Standard Deviation

37532.51115

983.47613

4116.334718

1.010153

0.360838027

Sample Variance

1408689393

967225.2984

16944211.51

1.020408

0.130204082

Sum

17198284

298513

2076148

140

284

Count

50

50

50

50

50

 

SUMMARY OUTPUT

               
                 

Regression Statistics

             

Multiple R

0.77

             

R Square

A

             

Adjusted R Square

B

             

Standard Error

25139.79

             

Observations

50.00

             
                 

ANOVA

               

 

df

SS

MS

F

Significance F

     

Regression

C

40585376295

F

H

3.0831E-08

     

Residual

D

28440403984

G

         

Total

E

69025780279

 

 

 

     
                 

 

Coefficients

Standard Error

t Stat

P-value

 

Intercept

-68363.1524

78524.7251

-0.8706

0.3886

 

People

6.4394

3.7051

I

0.0891

 

Income

7.2723

0.9358

J

0.0000

 

Competitors

-6709.4320

3818.5426

K

0.0857

 

Price

15968.7648

10219.0263

L

0.1251

 

 

 

  1. Complete the missing entries from A to L in this output
  2. Derive the regression model
  3. What does the standard error of estimate tell you about the model?
  4. Assess the independent variables significance at 5% level (develop hypothesis if necessary in the analysis)?
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Knowledge Booster
Correlation, Regression, and Association
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman