You want to obtain a sample to estimate a population mean age of the incoming fall term transfer students. Based on previous evidence, you believe the population standard deviation is approximately o = 5.6. You would like to be 99% confident that your estimate is within 2.4 of the true population mean. How large of a sample size is required?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Topic Video
Question
**Estimating Sample Size for Population Mean**

To estimate the population mean age of incoming fall term transfer students, follow these steps:

1. **Information Provided:**
   - Population standard deviation (\(\sigma\)) is approximately 5.6.
   - Desired confidence level is 99%.
   - Margin of error is 2.4 years.

2. **Objective:**
   - Determine the required sample size (\(n\)) to achieve the desired margin of error with 99% confidence.

3. **Instructions:**
   - Do not round between calculation steps.
   - Use technology to find the z-score corresponding to the 99% confidence level.
   - Provide your answer as a whole number, representing the total number of people required in the sample.
   - Use the correct rounding rule for determining sample size.

### Calculation Method

To find the required sample size (\(n\)), use the formula:

\[
n = \left( \frac{{z \times \sigma}}{E} \right)^2
\]

Where:
- \(z\) is the z-score for a 99% confidence level.
- \(\sigma\) is the population standard deviation (5.6).
- \(E\) is the margin of error (2.4).

By entering the values into this formula, you can calculate the needed sample size for a 99% confidence interval.
Transcribed Image Text:**Estimating Sample Size for Population Mean** To estimate the population mean age of incoming fall term transfer students, follow these steps: 1. **Information Provided:** - Population standard deviation (\(\sigma\)) is approximately 5.6. - Desired confidence level is 99%. - Margin of error is 2.4 years. 2. **Objective:** - Determine the required sample size (\(n\)) to achieve the desired margin of error with 99% confidence. 3. **Instructions:** - Do not round between calculation steps. - Use technology to find the z-score corresponding to the 99% confidence level. - Provide your answer as a whole number, representing the total number of people required in the sample. - Use the correct rounding rule for determining sample size. ### Calculation Method To find the required sample size (\(n\)), use the formula: \[ n = \left( \frac{{z \times \sigma}}{E} \right)^2 \] Where: - \(z\) is the z-score for a 99% confidence level. - \(\sigma\) is the population standard deviation (5.6). - \(E\) is the margin of error (2.4). By entering the values into this formula, you can calculate the needed sample size for a 99% confidence interval.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Centre, Spread, and Shape of a Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman