You hear a song from your playlist you haven't heard in a while and it warrants you to commence singing. As you are sing, the power of the compression wave you create is approximately 309.66 nW (note, nW is nano-Watts). What is the intensity of this sound as measured by your roommate who is standing 9.48m from you? Please give your answer in units of nW/m2. This unit is not a common one. Usually, the unit would simply be Watts per square-meter (which would be your answer divided by a million!). This goes to show you that are ears are amazingly sensitive to very tiny sound intensities. Note: Intensity was a topic covered in section 11.1, and I will provide the formula: I=P/A where P is the power in units of Watts, and A is the surface area of a sphere of radius "L" (in this problem). Note: In the space below, please enter you numerical answer. Do not enter any units. If you enter units, your answer will be marked as incorrect

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question

You hear a song from your playlist you haven't heard in a while and it warrants you to commence singing.  As you are sing, the power of the compression wave you create is approximately 309.66 nW (note, nW is nano-Watts).  What is the intensity of this sound as measured by your roommate who is standing 9.48m from you?  Please give your answer in units of nW/m2.  This unit is not a common one.  Usually, the unit would simply be Watts per square-meter (which would be your answer divided by a million!).  This goes to show you that are ears are amazingly sensitive to very tiny sound intensities.  Note: Intensity was a topic covered in section 11.1, and I will provide the formula: I=P/A where P is the power in units of Watts, and A is the surface area of a sphere of radius "L" (in this problem).  Note: In the space below, please enter you numerical answer.  Do not enter any units.  If you enter units, your answer will be marked as incorrect.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Properties of sound
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON