You have to show all work to receive credit and probabilities must be written properly. For example: P(_________) = work = value Given the standard normal mean (0) and standard deviation(1) find the following probabilities, Be sure to draw and label the graphs and write the probabilities properly i.e., P( ______________ ) =: 1.) Between -0.75 and 1.25 2.) Greater than 1.43 3.) Less than -1.08
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
You have to show all work to receive credit and probabilities must be written properly.
For example: P(_________) = work = value
Given the standard normal mean (0) and standard deviation(1) find the following probabilities, Be sure to draw and label the graphs and write the probabilities properly i.e., P( ______________ ) =:
1.) Between -0.75 and 1.25
2.) Greater than 1.43
3.) Less than -1.08
Draw the normal curve
Required shaded area under the normal curve
Refer Standard normal table/Z-table OR use excel formula "=NORM.S.DIST(1.25, TRUE)" & "=NORM.S.DIST(-0.75, TRUE)" to find the probability.
Step by step
Solved in 3 steps with 19 images