You are the science officer on a visit to a distant solar system. Prior to landing on a planet you measure its radius to be 9 x 106 m and its rotation period to be 22.3 hours. You have previously determined that the planet orbits 2.2 x 10¹¹1 m from its star with a period of 402 days (3.473 x 107 sec). Once on the surface you find that the free-fall acceleration is 12.2 m/sec². a) What is the mass of the planet? Answer: 1.5 x 10²5 kg. b) What is the mass of the star? Answer: 5.2 x 103⁰ kg.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
100%
D
Gm₁m₂
Fg
KE = mv², Ug = -
2πr
, ac = =²₁, v = ²7₁
T
Gm₁m₂
GM
g = G, Vesc =
2GM
R
, E = KE + Ug, G = 6.674 x 10-¹1 Nm²/kg²
Problem 1:
You are the science officer on a visit to a distant solar system. Prior to landing on a planet you
measure its radius to be 9 x 106 m and its rotation period to be 22.3 hours. You have
previously determined that the planet orbits 2.2 x 10¹¹ m from its star with a period of
402 days (3.473 x 107 sec). Once on the surface you find that the free-fall acceleration is
12.2 m/sec².
a) What is the mass of the planet? Answer: 1.5 x 1025 kg.
b) What is the mass of the star? Answer: 5.2 x 1030 kg.
Transcribed Image Text:D Gm₁m₂ Fg KE = mv², Ug = - 2πr , ac = =²₁, v = ²7₁ T Gm₁m₂ GM g = G, Vesc = 2GM R , E = KE + Ug, G = 6.674 x 10-¹1 Nm²/kg² Problem 1: You are the science officer on a visit to a distant solar system. Prior to landing on a planet you measure its radius to be 9 x 106 m and its rotation period to be 22.3 hours. You have previously determined that the planet orbits 2.2 x 10¹¹ m from its star with a period of 402 days (3.473 x 107 sec). Once on the surface you find that the free-fall acceleration is 12.2 m/sec². a) What is the mass of the planet? Answer: 1.5 x 1025 kg. b) What is the mass of the star? Answer: 5.2 x 1030 kg.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Kepler's Laws
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON