You are planning a birthday party for your niece and need to make at least 4 gallons of Kool-Aid, which you would like to cool down to 32 oF (0 °C) before the party begins. Unfortunately, your refrigerator is already so full of treats that you know there will be no room for the Kool-Aid. So, with a sudden flash of insight, you decide to start with 4 gallons (1 gallon = 3.7854 liters, and a liter (L) is 0.001 cubic meters) of the coldest tap water you can get, which you determine is 50 °F (10 °C), and then cool it down with a 1- quart (1/4 of a gallon) chunk of ice you already have in your freezer. The owner's manual for your refrigerator states that when the freezer setting is on high, the temperature is -20 °C. Will your plan work? You assume that the density of the Kool-Aid is about the same as the density of water. You look in your physics book and find that the density of water is 1.0 g/cm3 (1kg/L), the density of ice is 0.9 g/cm3 (0.9kg/L), the heat capacity of water is 4200 J / (kg °C), the heat capacity of ice is 2100 J / (kg °C), the heat of fusion of water is 3.4 x 105 J/kg, and its heat of vaporization is 2.3 x 106 J/kg.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question

You are planning a birthday party for your niece and need to make at least 4 gallons of Kool-Aid, which you would like to cool down to 32 oF (0 °C) before the party begins. Unfortunately, your refrigerator is already so full of treats that you know there will be no room for the Kool-Aid. So, with a sudden flash of insight, you decide to start with 4 gallons (1 gallon = 3.7854 liters, and a liter (L) is 0.001 cubic meters) of the coldest tap water you can get, which you determine is 50 °F (10 °C), and then cool it down with a 1- quart (1/4 of a gallon) chunk of ice you already have in your freezer. The owner's manual for your refrigerator states that when the freezer setting is on high, the temperature is -20 °C. Will your plan work? You assume that the density of the Kool-Aid is about the same as the density of water. You look in your physics book and find that the density of water is 1.0 g/cm3 (1kg/L), the density of ice is 0.9 g/cm3 (0.9kg/L), the heat capacity of water is 4200 J / (kg °C), the heat capacity of ice is 2100 J / (kg °C), the heat of fusion of water is 3.4 x 105 J/kg, and its heat of vaporization is 2.3 x 106 J/kg.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Energy transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON