You are given that Here z is a function of independent variables y and z. a. Find . dr 8z di 82 in terms of x, y and z. (x, y, z) sin (a) (1,3,-2/3) = 8 sin (a) di b. Now evaluate it at the point (1, 3, -2/3). dr əz 8 S f dr 8 8 3x²z+4y-In (x) - x² +3=0. a R Ω C Ω E E

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
You are given that
Here is a function of independent variables y and z.
da
a. Find in terms of x, y and z.
dz
di
8z
(x, y, z) =
ər
əz
sin (a)
(1,3,-2/3) =
b
b. Now evaluate it at the point (1,3,-2/3).
a
sin (a)
Әх
ə
f
dr
f
8
8
3x²z+ 4y ln(x) - x² +3=0.
a
a
Ω
E
E
Transcribed Image Text:You are given that Here is a function of independent variables y and z. da a. Find in terms of x, y and z. dz di 8z (x, y, z) = ər əz sin (a) (1,3,-2/3) = b b. Now evaluate it at the point (1,3,-2/3). a sin (a) Әх ə f dr f 8 8 3x²z+ 4y ln(x) - x² +3=0. a a Ω E E
Find
and for
ду
дz
дх
11
ав sin (a)
Oz
ду
пос
sin (a)
ә
Әх
Ә
Әх
f
f
8
8
sin(2æ . 23 . z)
R
Ω
a Ω
= 4 + 4x + 5y + 5z.
Е
е
Transcribed Image Text:Find and for ду дz дх 11 ав sin (a) Oz ду пос sin (a) ә Әх Ә Әх f f 8 8 sin(2æ . 23 . z) R Ω a Ω = 4 + 4x + 5y + 5z. Е е
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,