You are analyzing the following (not necessarily well designed) process: At the start of the process, there two fluid streams, one containing species ‘A’ at a concentration of 2mol/l (Stream 1) and one containing species ‘B’ at a concentration of 3mol/l (Stream 2). Each stream has a control valve near the start of the process. Stream 1 has a temperature of 90°C and Stream 2 has a temperature of 70°C. The two streams enter a motorized mixer. A single stream exits the mixer (Stream 3). Stream 3 then enters a stirred tank reactor where nA+mB⟶C. The exit stream (Stream 4) enters a fluid separator. Out of the separator are two streams, one containing species ‘A’ and ‘B’ (Stream 5) and the other containing species ‘C’ at concentration of 1.5mol/l (Stream 6). Stream 5 goes back into the mixer. Stream 6 goes through a pump and another control valve. This stream is then cooled in a shell and tube heat exchanger using a cooled water stream that is at a temperature of 15°C. The outlet flow, now at a temperature of 50°C, then enters an insulated product storage tank. Your first task it to sketch a PFD for this process. Write down rectangles to represent the equipment. Sketch in the flow streams and connections. Write down the state-points (e.g., flow rates and temperatures) in their proper locations. Replace the rectangles with the proper symbols.
You are analyzing the following (not necessarily well designed) process: At the start of the process, there two fluid streams, one containing species ‘A’ at a concentration of 2mol/l (Stream 1) and one containing species ‘B’ at a concentration of 3mol/l (Stream 2). Each stream has a control valve near the start of the process. Stream 1 has a temperature of 90°C and Stream 2 has a temperature of 70°C. The two streams enter a motorized mixer. A single stream exits the mixer (Stream 3). Stream 3 then enters a stirred tank reactor where nA+mB⟶C. The exit stream (Stream 4) enters a fluid separator. Out of the separator are two streams, one containing species ‘A’ and ‘B’ (Stream 5) and the other containing species ‘C’ at concentration of 1.5mol/l (Stream 6). Stream 5 goes back into the mixer. Stream 6 goes through a pump and another control valve. This stream is then cooled in a shell and tube heat exchanger using a cooled water stream that is at a temperature of 15°C. The outlet flow, now at a temperature of 50°C, then enters an insulated product storage tank. Your first task it to sketch a PFD for this process. Write down rectangles to represent the equipment. Sketch in the flow streams and connections. Write down the state-points (e.g., flow rates and temperatures) in their proper locations. Replace the rectangles with the proper symbols.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
You are analyzing the following (not necessarily well designed) process:
At the start of the process, there two fluid streams, one containing species ‘A’ at a concentration of 2mol/l (Stream 1) and one containing species ‘B’ at a concentration of 3mol/l (Stream 2).
Each stream has a control valve near the start of the process.
Stream 1 has a temperature of 90°C and Stream 2 has a temperature of 70°C.
The two streams enter a motorized mixer.
A single stream exits the mixer (Stream 3).
Stream 3 then enters a stirred tank reactor where nA+mB⟶C.
The exit stream (Stream 4) enters a fluid separator.
Out of the separator are two streams, one containing species ‘A’ and ‘B’ (Stream 5) and the other containing species ‘C’ at concentration of 1.5mol/l (Stream 6).
Stream 5 goes back into the mixer.
Stream 6 goes through a pump and another control valve.
This stream is then cooled in a shell and tube heat exchanger using a cooled water stream that is at a temperature of 15°C.
The outlet flow, now at a temperature of 50°C, then enters an insulated product storage tank.
Your first task it to sketch a PFD for this process.
Write down rectangles to represent the equipment.
Sketch in the flow streams and connections.
Write down the state-points (e.g., flow rates and temperatures) in their proper locations.
Replace the rectangles with the proper symbols.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY