y"- y'=0 ; y, (t) =e y,(1)=e* y= 3t +r a. b. y"+2y'-3y 0 c. ty'-y=r ; y. (1) = cosht y:(1)=d : с.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Part I
Verify that each given function is a solution of the differential equation.
y. (1)=e'
y (1) =e
y = 3t +r
y, (1)=cosht
y: (1)=e
a.
y"-y'=0 ;
b. y"+2y'-3y= 0
c. ーy=r:
d. y""+ 4y"+3y=t
(1)=c" +
e. 21 y"+3ty'-y=0, t>0
f. ty"+5ty'+ 4y 0, t>0 :
0<t< n/2
y (1) =r
y, (1)=rInt
y=(cost)Incost + t sint
, (1)=r
g. y"+ y = sect,
h. y'-2ty 1, t>0
y(1) =e" ['e*ds+e
i. y'=-
*+y = 25
:
j. 2y'+ y = 0 ;
y=e2
6 6
y ==--e
5 5
dy
k.
+ 20y = 24
dt
1. y"-6y'+13y=0
m. (y-x)y'=y-x+8 ;
n. y'= 25+ y
o. 2y'= y' cos x
y = e" cos 2x
y = x+4x+2
y =5 tan 5x
-1/2
y=(1-sin.x)2
Transcribed Image Text:Part I Verify that each given function is a solution of the differential equation. y. (1)=e' y (1) =e y = 3t +r y, (1)=cosht y: (1)=e a. y"-y'=0 ; b. y"+2y'-3y= 0 c. ーy=r: d. y""+ 4y"+3y=t (1)=c" + e. 21 y"+3ty'-y=0, t>0 f. ty"+5ty'+ 4y 0, t>0 : 0<t< n/2 y (1) =r y, (1)=rInt y=(cost)Incost + t sint , (1)=r g. y"+ y = sect, h. y'-2ty 1, t>0 y(1) =e" ['e*ds+e i. y'=- *+y = 25 : j. 2y'+ y = 0 ; y=e2 6 6 y ==--e 5 5 dy k. + 20y = 24 dt 1. y"-6y'+13y=0 m. (y-x)y'=y-x+8 ; n. y'= 25+ y o. 2y'= y' cos x y = e" cos 2x y = x+4x+2 y =5 tan 5x -1/2 y=(1-sin.x)2
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,