(y² + xy)dx-x²dy = 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

please solve step by step 

On this page, we discuss a first-order differential equation. The given differential equation is:

\[
(y^2 + xy) dx - x^2 dy = 0
\]

Explanation:
- \( (y^2 + xy) dx \) and \( -x^2 dy \) are terms involving both \(x\) and \(y\).
- \( dx \) and \( dy \) signify the differentials of \(x\) and \(y\), respectively.
- This equation is set to zero, indicating it is a homogeneous differential equation.

To solve differential equations like this, you would typically separate the variables and integrate each side accordingly. This type of equation is useful in various applications, including physics and engineering.

If you require further assistance in solving or understanding this differential equation, feel free to explore our advanced topics or contact our support team!
Transcribed Image Text:On this page, we discuss a first-order differential equation. The given differential equation is: \[ (y^2 + xy) dx - x^2 dy = 0 \] Explanation: - \( (y^2 + xy) dx \) and \( -x^2 dy \) are terms involving both \(x\) and \(y\). - \( dx \) and \( dy \) signify the differentials of \(x\) and \(y\), respectively. - This equation is set to zero, indicating it is a homogeneous differential equation. To solve differential equations like this, you would typically separate the variables and integrate each side accordingly. This type of equation is useful in various applications, including physics and engineering. If you require further assistance in solving or understanding this differential equation, feel free to explore our advanced topics or contact our support team!
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,