y X y 1 2 831 1073 y = 4 3 1317 1715 Use exponential regression to find an exponential equation that best fits this data. Give both a and b rounded to at least 4 decimal places. 5 2127 6 2487 Use linear regression to find an linear equation that best fits this data. Give both m and b rounded to at least two decimal places. O Linear O Exponential Of these two, which equation best fits the data?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Data Table:**

| x | 1   | 2   | 3   | 4   | 5   | 6   |
|---|-----|-----|-----|-----|-----|-----|
| y | 831 | 1073| 1317| 1715| 2127| 2487|

**Instructions:**

1. **Exponential Regression:**  
   Use exponential regression to find an exponential equation that best fits this data. Provide both \(a\) and \(b\) rounded to at least four decimal places.  
   \[
   y = 
   \]

2. **Linear Regression:**  
   Use linear regression to find a linear equation that best fits this data. Provide both \(m\) and \(b\) rounded to at least two decimal places.  
   \[
   y = 
   \]

3. **Best Fit Equation:**  
   Of these two, which equation best fits the data?
   - [ ] Linear
   - [ ] Exponential

**Submit Question Button:**

- [Submit Question]
Transcribed Image Text:**Data Table:** | x | 1 | 2 | 3 | 4 | 5 | 6 | |---|-----|-----|-----|-----|-----|-----| | y | 831 | 1073| 1317| 1715| 2127| 2487| **Instructions:** 1. **Exponential Regression:** Use exponential regression to find an exponential equation that best fits this data. Provide both \(a\) and \(b\) rounded to at least four decimal places. \[ y = \] 2. **Linear Regression:** Use linear regression to find a linear equation that best fits this data. Provide both \(m\) and \(b\) rounded to at least two decimal places. \[ y = \] 3. **Best Fit Equation:** Of these two, which equation best fits the data? - [ ] Linear - [ ] Exponential **Submit Question Button:** - [Submit Question]
Expert Solution
Step 1

Sol:-

Exponential Regression:-

The curve to be fitted is y=aebxtaking logarithm on both sides, we getlog10(y)=log10(a)+bxlog10(e)Y=A+Bx where Y=log10(y),A=log10(a),B=blog10(e)which linear in Y,xSo the corresponding normal equations areY=nA+BxxY=Ax+Bx2

The values are calculated using the following table

x y Y=log10(y) x2 xY
1 831 2.9196 1 2.9196
2 1073 3.0306 4 6.0612
3 1317 3.1196 9 9.3588
4 1715 3.2343 16 12.9371
5 2127 3.3278 25 16.6388
6 2487 3.3957 36 20.3741
--- --- --- --- ---
x=21 y=9550 Y=19.0275 x2=91 xY=68.2895

Substituting these values in the normal equations

6A+21B=19.0275

21A+91B=68.2895

Solving these equation :-

6a+21b=19.0275

and 21a+91b=68.2895

21a+91b=68.29

6a+21b=19.0275(1)

21a+91b=68.2895(2)

equation(1)×742a+147b=133.1925

equation(2)×242a+182b=136.579

Subtracting -35b=-3.3865

35b=3.3865

b=0.096757

 Putting b=0.096757 in equation (1), we have

6a+21(0.096757)=19.0275

6a=19.0275-2.0319

6a=16.9956

a=2.8326

a=2.8326 and b=0.096757

we obtain A=2.8326,B=0.0968

a=antilog10(A)=antilog10(2.8326)=680.1426andb=Blog10(e)=0.09680.4343=0.2228Now substituting this values in the equation is y=aebx, we gety=680.1426e0.2228x

 

 

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,