y train a linear function ing stochastic gradient = 0.1,0₁ = 0.1, 02 = C

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Please dont use code

**Training a Linear Function using Stochastic Gradient Descent**

In this exercise, we will manually train a linear function \( h_{\theta}(\vec{x}) = \vec{\theta}^T \cdot \vec{x} \) based on the training instances provided below, using the stochastic gradient descent algorithm. 

### Initial Parameters and Learning Rate

- The initial values of the parameters are:
  - \( \theta_0 = 0.1 \)
  - \( \theta_1 = 0.1 \)
  - \( \theta_2 = 0.1 \)

- The learning rate \( \alpha \) is set at 0.1. 

### Objective

Each parameter should be updated at least five times.

### Training Instances

The dataset consists of three variables: \( x_1 \), \( x_2 \), and \( y \), given as:

| \( x_1 \) | \( x_2 \) | \( y \) |
|:--------:|:--------:|:------:|
|     0    |     0    |   2    |
|     0    |     1    |   3    |
|     1    |     0    |   3    |
|     1    |     1    |   4    |

Utilize these values to apply stochastic gradient descent and iteratively refine the parameters for at least five iterations each.
Transcribed Image Text:**Training a Linear Function using Stochastic Gradient Descent** In this exercise, we will manually train a linear function \( h_{\theta}(\vec{x}) = \vec{\theta}^T \cdot \vec{x} \) based on the training instances provided below, using the stochastic gradient descent algorithm. ### Initial Parameters and Learning Rate - The initial values of the parameters are: - \( \theta_0 = 0.1 \) - \( \theta_1 = 0.1 \) - \( \theta_2 = 0.1 \) - The learning rate \( \alpha \) is set at 0.1. ### Objective Each parameter should be updated at least five times. ### Training Instances The dataset consists of three variables: \( x_1 \), \( x_2 \), and \( y \), given as: | \( x_1 \) | \( x_2 \) | \( y \) | |:--------:|:--------:|:------:| | 0 | 0 | 2 | | 0 | 1 | 3 | | 1 | 0 | 3 | | 1 | 1 | 4 | Utilize these values to apply stochastic gradient descent and iteratively refine the parameters for at least five iterations each.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Symmetric positive definite matrix
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education