y== Cosinlrx) a Ca Cosla.) aSatustied if x=
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
I don't understand why alpha=(2n-1)*pi/2 and not alpha=n*pi. Can you please explain it to me. Thank you
![The handwritten notes explore a mathematical analysis involving differential equations and eigenfunctions, focusing on boundary conditions and parameter dependencies.
---
### Notes Transcription
**Case: \( x < 0 \) → \( y(x) = 0 \)**
**Case: \( \lambda = \alpha^2 > 0 \), \( \alpha > 0 \)**
- \( y(x) = C_1 \cos(\alpha x) + C_2 \sin(\alpha x) \)
- \( 0 = y(0) = C_1 \)
- → \( y(x) = C \sin(\alpha x) \) (boxed in red)
- \( 0 = y'(1) = \alpha C_2 \cos(\alpha \cdot 1) \)
- **Satisfied if** \( \alpha = \frac{(2n-1)\pi}{2} \)
→ **Eigenvalues of x:**
- \( \lambda_n = \alpha_n^2 = \left(\frac{(2n-1)\pi}{2}\right)^2 \)
- \( n \in \mathbb{N} \)
**Eigenfunctions:**
- \( y_n(x) = \sin(\alpha_n x) \)
- \( = \sin\left(\frac{(2n-1)\pi x}{2}\right) \)
---
### Explanation
- **Boundary Conditions:**
- The solution \( y(x) = 0 \) when \( x < 0 \).
- The solution considers conditions at \( x = 0 \) and \( x = 1 \) to determine constants and forms.
- **Eigenvalues and Eigenfunctions:**
- Eigenvalues are calculated as the square of \(\alpha\), determined by boundary conditions.
- Eigenfunctions are sine functions dependent on \(\alpha\), showing oscillatory behavior.
These notes illustrate solving boundary-value problems typical in physics and engineering contexts, focusing on trigonometric solutions.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fca708747-373f-4dbe-b127-10492ca0e68f%2F895d93ff-d1b3-41a8-8905-c603eee356ef%2Fhsg930f_processed.png&w=3840&q=75)
Transcribed Image Text:The handwritten notes explore a mathematical analysis involving differential equations and eigenfunctions, focusing on boundary conditions and parameter dependencies.
---
### Notes Transcription
**Case: \( x < 0 \) → \( y(x) = 0 \)**
**Case: \( \lambda = \alpha^2 > 0 \), \( \alpha > 0 \)**
- \( y(x) = C_1 \cos(\alpha x) + C_2 \sin(\alpha x) \)
- \( 0 = y(0) = C_1 \)
- → \( y(x) = C \sin(\alpha x) \) (boxed in red)
- \( 0 = y'(1) = \alpha C_2 \cos(\alpha \cdot 1) \)
- **Satisfied if** \( \alpha = \frac{(2n-1)\pi}{2} \)
→ **Eigenvalues of x:**
- \( \lambda_n = \alpha_n^2 = \left(\frac{(2n-1)\pi}{2}\right)^2 \)
- \( n \in \mathbb{N} \)
**Eigenfunctions:**
- \( y_n(x) = \sin(\alpha_n x) \)
- \( = \sin\left(\frac{(2n-1)\pi x}{2}\right) \)
---
### Explanation
- **Boundary Conditions:**
- The solution \( y(x) = 0 \) when \( x < 0 \).
- The solution considers conditions at \( x = 0 \) and \( x = 1 \) to determine constants and forms.
- **Eigenvalues and Eigenfunctions:**
- Eigenvalues are calculated as the square of \(\alpha\), determined by boundary conditions.
- Eigenfunctions are sine functions dependent on \(\alpha\), showing oscillatory behavior.
These notes illustrate solving boundary-value problems typical in physics and engineering contexts, focusing on trigonometric solutions.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)