Y 3/1 1 Um S Rewrite J(w, b, A) in matriz form. 1 , and 8: - [. .

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Given a dataset D = {(z,y), i=1,2,...,m} consisting of m predictors x = =(Ti,..., Tin) €
R" and m corresponding responses y, E R. Consider the following linear ridge regression model:
(P)
minimize J(w, b, x):=
m
;Σ((x₁, w) + b - y)² + (|||| +8²)
i=1
2m
where (w, b) ER" x R is a vector of parameters to be determined and A> 0 is a penalty
parameter to be tuned for finding the best regression function.
Transcribed Image Text:Given a dataset D = {(z,y), i=1,2,...,m} consisting of m predictors x = =(Ti,..., Tin) € R" and m corresponding responses y, E R. Consider the following linear ridge regression model: (P) minimize J(w, b, x):= m ;Σ((x₁, w) + b - y)² + (|||| +8²) i=1 2m where (w, b) ER" x R is a vector of parameters to be determined and A> 0 is a penalty parameter to be tuned for finding the best regression function.
Question 1.
Let
Y =
3/1
1
Um
5
X :-
Rewrite J(w, b, A) in matriz form.
Define
J(w, b) :=
[1 211
1
Iml
1
Ilm
.
and 8:=
- [].
m
2mΣ((x, w) + b - y)².
i=1
Transcribed Image Text:Question 1. Let Y = 3/1 1 Um 5 X :- Rewrite J(w, b, A) in matriz form. Define J(w, b) := [1 211 1 Iml 1 Ilm . and 8:= - []. m 2mΣ((x, w) + b - y)². i=1
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,