xy Let f: R² →R where f(x, y) = 0 if (x, y) = (0,0) and f(x, y) = 2² + y² if (x, y) ‡ (0,0). (a) Prove that Duf(0,0) = 0 if u = (1,0). (b) Prove that Duf(0,0) = 0 if u = (0,1). (c) Prove that Duf(0, 0) does not exist if u = (a, b) where ab 0. (d) Prove that Df(0,0) does not exist (this can be done by proving that f is not continuous at (0, 0)).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Real Analysis II Kindly find similar sample in 2nd photo as guide (also try solving using full derivative instead of partial)
**Problem 1: Analysis of a Function**

Consider the function \( f: \mathbb{R}^2 \to \mathbb{R} \) defined by \( f(x, y) = 0 \) if \((x, y) = (0, 0)\) and \( f(x, y) = \frac{xy}{x^2+y^2} \) if \((x, y) \neq (0, 0)\).

**Tasks:**

(a) Prove that \( D_u f(0, 0) = 0 \) if \( u = (1, 0) \).

(b) Prove that \( D_u f(0, 0) = 0 \) if \( u = (0, 1) \).

(c) Prove that \( D_u f(0, 0) \) does not exist if \( u = (a, b) \) where \( ab \neq 0 \).

(d) Prove that \( Df(0, 0) \) does not exist (this can be done by proving that \( f \) is not continuous at \( (0, 0) \)).
Transcribed Image Text:**Problem 1: Analysis of a Function** Consider the function \( f: \mathbb{R}^2 \to \mathbb{R} \) defined by \( f(x, y) = 0 \) if \((x, y) = (0, 0)\) and \( f(x, y) = \frac{xy}{x^2+y^2} \) if \((x, y) \neq (0, 0)\). **Tasks:** (a) Prove that \( D_u f(0, 0) = 0 \) if \( u = (1, 0) \). (b) Prove that \( D_u f(0, 0) = 0 \) if \( u = (0, 1) \). (c) Prove that \( D_u f(0, 0) \) does not exist if \( u = (a, b) \) where \( ab \neq 0 \). (d) Prove that \( Df(0, 0) \) does not exist (this can be done by proving that \( f \) is not continuous at \( (0, 0) \)).
**Mathematical Function and Linear Transformation Example**

**Example:**
Let \( f: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be defined by \( f(x, y) = (x^2 y, 3x + 2y) \). Let \( u = (1, 0) \) and \( c = (1, 1) \).

**Claim:**  
\( Lu = (2, 3) \)

**Proof:**

1. Fix \( \varepsilon > 0 \). Choose \( \delta = \frac{\varepsilon}{3} \). Assume \( 0 < |t| < \delta \). Then, we have:

\[
\left| \frac{f(c + tu) - f(c) - Lu}{t} \right| = \left| \frac{f(1 + t, 1) - (1, 5) - (2, 3)}{t} \right|
\]

2. Expand and simplify:

\[
= \left| \frac{(1 + t)^2 + 3t + 5 - (1, 5) - (2, 3)}{t} \right|
\]

3. Further simplification gives:

\[
= \left| \frac{(2t + t^2, 3t) - (2, 3)}{t} \right|
\]

4. Simplifying yields:

\[
= \left| (t, 0) \right| \quad \text{when} \quad |t| < \delta = \varepsilon
\]

**Query:**
Why is \( Lu = (2, 3) \)?

\[ 
L = \begin{bmatrix}
\frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\
\frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y}
\end{bmatrix}
=
\begin{bmatrix}
2xy & x^2 \\
3 & 2 
\end{bmatrix}
,\ Lu = \begin{bmatrix}
\frac{2xy}{3} \\
\frac{x^2}{3}
\end{bmatrix}
\]
\[
L
Transcribed Image Text:**Mathematical Function and Linear Transformation Example** **Example:** Let \( f: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be defined by \( f(x, y) = (x^2 y, 3x + 2y) \). Let \( u = (1, 0) \) and \( c = (1, 1) \). **Claim:** \( Lu = (2, 3) \) **Proof:** 1. Fix \( \varepsilon > 0 \). Choose \( \delta = \frac{\varepsilon}{3} \). Assume \( 0 < |t| < \delta \). Then, we have: \[ \left| \frac{f(c + tu) - f(c) - Lu}{t} \right| = \left| \frac{f(1 + t, 1) - (1, 5) - (2, 3)}{t} \right| \] 2. Expand and simplify: \[ = \left| \frac{(1 + t)^2 + 3t + 5 - (1, 5) - (2, 3)}{t} \right| \] 3. Further simplification gives: \[ = \left| \frac{(2t + t^2, 3t) - (2, 3)}{t} \right| \] 4. Simplifying yields: \[ = \left| (t, 0) \right| \quad \text{when} \quad |t| < \delta = \varepsilon \] **Query:** Why is \( Lu = (2, 3) \)? \[ L = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} 2xy & x^2 \\ 3 & 2 \end{bmatrix} ,\ Lu = \begin{bmatrix} \frac{2xy}{3} \\ \frac{x^2}{3} \end{bmatrix} \] \[ L
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,