xy - 1. Let f: R² → R where f(x, y) = 0 if (x, y) = (0,0) and f(x, y) = ² + y² if (x, y) = (0,0). - (a) Prove that Duf(0, 0) = 0 if u = (1,0). (b) Prove that Duf(0,0) = 0 if u = (0, 1). (c) Prove that Duf(0, 0) does not exist if u = (a, b) where ab 0.
xy - 1. Let f: R² → R where f(x, y) = 0 if (x, y) = (0,0) and f(x, y) = ² + y² if (x, y) = (0,0). - (a) Prove that Duf(0, 0) = 0 if u = (1,0). (b) Prove that Duf(0,0) = 0 if u = (0, 1). (c) Prove that Duf(0, 0) does not exist if u = (a, b) where ab 0.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![xy
1. Let f: R²R where f(x, y) = 0 if (x, y) = (0,0) and f(x, y) = x² + y²
if (x, y) = (0,0).
(a) Prove that Duf(0,0) = 0 if u = (1,0).
-
(b) Prove that Duf(0,0) = 0 if u = (0, 1).
(c) Prove that Duf(0, 0) does not exist if u = (a, b) where ab 0.
(d) Prove that Df(0, 0) does not exist (this can be done by proving
that f is not continuous at (0,0)).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F79599c56-a340-49a0-b0ff-829b3947a798%2F0dc7064e-4e4e-4151-aa62-1083bf1bc6a5%2Flnqiigs_processed.jpeg&w=3840&q=75)
Transcribed Image Text:xy
1. Let f: R²R where f(x, y) = 0 if (x, y) = (0,0) and f(x, y) = x² + y²
if (x, y) = (0,0).
(a) Prove that Duf(0,0) = 0 if u = (1,0).
-
(b) Prove that Duf(0,0) = 0 if u = (0, 1).
(c) Prove that Duf(0, 0) does not exist if u = (a, b) where ab 0.
(d) Prove that Df(0, 0) does not exist (this can be done by proving
that f is not continuous at (0,0)).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)