XXXX 4. Show that the difference of two solutions of an inhomogeneous linear equation Lu = g with the same g is a solution of the homogeneous equation Lu= 0.
XXXX 4. Show that the difference of two solutions of an inhomogeneous linear equation Lu = g with the same g is a solution of the homogeneous equation Lu= 0.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
[Partial
The second picture is for context
![2. Which of the following operators are linear?
(a) Lu=ux + xUy
(b) Lu=ux + uu y
(c) Lu= ux+u²
(d)
(e) Lu= √
Lu=ux + Uy + 1
V1+x2 (cos y)u. +uyxy – [arctan(x/y)]u
-
3. For each of the following equations, state the order and whether it
is nonlinear, linear inhomogeneous, or linear homogeneous; provide
reasons.
(a) ut -Uxx + 1 = 0
Ut
(b) ut -Uxx + xu = 0
(c) UtUxxt + uux = 0
(d) utt - Uxx + x² = 0
(e) iu uxx+u/x = 0
= 0
(f) ux(1+u²)¯¹⁄² +uy(1 +u²)¯¹⁄² ;
(g) ux+e³uy = 0
(h) U₁+Uxxxx + √√1+u = 0
4. Show that the difference of two solutions of an inhomogeneous linear
equation Lu = g with the same g is a solution of the homogeneous
equation Lu= 0.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd7a4e2dd-fef9-462f-a1aa-125d5a5927c0%2F0e800dd9-27fa-4dfb-805a-f2629624efb4%2Focfz87_processed.png&w=3840&q=75)
Transcribed Image Text:2. Which of the following operators are linear?
(a) Lu=ux + xUy
(b) Lu=ux + uu y
(c) Lu= ux+u²
(d)
(e) Lu= √
Lu=ux + Uy + 1
V1+x2 (cos y)u. +uyxy – [arctan(x/y)]u
-
3. For each of the following equations, state the order and whether it
is nonlinear, linear inhomogeneous, or linear homogeneous; provide
reasons.
(a) ut -Uxx + 1 = 0
Ut
(b) ut -Uxx + xu = 0
(c) UtUxxt + uux = 0
(d) utt - Uxx + x² = 0
(e) iu uxx+u/x = 0
= 0
(f) ux(1+u²)¯¹⁄² +uy(1 +u²)¯¹⁄² ;
(g) ux+e³uy = 0
(h) U₁+Uxxxx + √√1+u = 0
4. Show that the difference of two solutions of an inhomogeneous linear
equation Lu = g with the same g is a solution of the homogeneous
equation Lu= 0.
![Linearity means the following. Write the equation in the form Lu = 0,
where L is an operator. That is, if v is any function, Lu is a new function. For
instance, L = a/ax is the operator that takes v into its partial derivative Ux.
In Example 2, the operator L is L=ə/Əx yə/Əy. (Lu
a/ax +ya/ay. (Lu = ux + yuy.) The
definition we want for linearity is
+
L(u + v) = Lu + Lv
L(cu) = cLu
(3)
for any functions u, v and any constant c. Whenever (3) holds (for all choices
of u, v, and c), L is called linear operator. The equation
Lu = 0
(4)
is called linear if L is a linear operator. Equation (4) is called a homogeneous
linear equation. The equation
Lu = 8,
(5)
where g 0 is a given function of the independent variables, is called an
inhomogeneous linear equation. For instance, the equation
(cos xy²)ux - y²uy = tan(x² + y²)
is an inhomogeneous linear equation.
(6)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd7a4e2dd-fef9-462f-a1aa-125d5a5927c0%2F0e800dd9-27fa-4dfb-805a-f2629624efb4%2Fjtcrbp_processed.png&w=3840&q=75)
Transcribed Image Text:Linearity means the following. Write the equation in the form Lu = 0,
where L is an operator. That is, if v is any function, Lu is a new function. For
instance, L = a/ax is the operator that takes v into its partial derivative Ux.
In Example 2, the operator L is L=ə/Əx yə/Əy. (Lu
a/ax +ya/ay. (Lu = ux + yuy.) The
definition we want for linearity is
+
L(u + v) = Lu + Lv
L(cu) = cLu
(3)
for any functions u, v and any constant c. Whenever (3) holds (for all choices
of u, v, and c), L is called linear operator. The equation
Lu = 0
(4)
is called linear if L is a linear operator. Equation (4) is called a homogeneous
linear equation. The equation
Lu = 8,
(5)
where g 0 is a given function of the independent variables, is called an
inhomogeneous linear equation. For instance, the equation
(cos xy²)ux - y²uy = tan(x² + y²)
is an inhomogeneous linear equation.
(6)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)