x(п) %3D п а" и(-n) 5. =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
please solve the z-transform for 5, 6 in similar way to the solved one above if that possible
![4.
х(п) %3D п а" и(п)
1
Z{a"u(n)} =
ROC : |z| > |a|
1 - az-1
d
And Z{n x(n)} = -z
dz
X(z) , differentiationin z – domain property
d
1
Zin a"u(п)}
here x(n) = a"u(n)
= -Z
dz 1- az-1
|
d
dz
(1 – az-1)2
d
(1 – az"
= -z
-1) 음1-1.
(1 – az-1)
|
dz
0 + a(-1)z-2
= -z
(1 – az-1)2
a z-1
ROC : |z| > |a|
(1 – az-1)2 '
a z-1
Thus
па" и(п)
ROC : |z| > ]a|
|(1-az-1)2
x (п) %3D п а" и(-п)
x(п) %3D п (п + 1) и (п)
5.
6.
||](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa6fe45da-ee62-4004-8275-058a02bbba24%2F00ac1319-c13d-4e7e-9b0b-10647b0d231f%2Fjvm6wl7_processed.png&w=3840&q=75)
Transcribed Image Text:4.
х(п) %3D п а" и(п)
1
Z{a"u(n)} =
ROC : |z| > |a|
1 - az-1
d
And Z{n x(n)} = -z
dz
X(z) , differentiationin z – domain property
d
1
Zin a"u(п)}
here x(n) = a"u(n)
= -Z
dz 1- az-1
|
d
dz
(1 – az-1)2
d
(1 – az"
= -z
-1) 음1-1.
(1 – az-1)
|
dz
0 + a(-1)z-2
= -z
(1 – az-1)2
a z-1
ROC : |z| > |a|
(1 – az-1)2 '
a z-1
Thus
па" и(п)
ROC : |z| > ]a|
|(1-az-1)2
x (п) %3D п а" и(-п)
x(п) %3D п (п + 1) и (п)
5.
6.
||
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)