xdx ● Find by first dividing. x+1 Do your results agree? xdx Then use Formula #47 to find ſ- x+1

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Certainly! Here's the transcription of the image as it would appear on an educational website, related to integrals:

---

**Reference Pages: Table of Integrals**

**Forms Involving \(a + bu\)**

47. \(\int \frac{du}{a + bu} = \frac{1}{b} \ln |a + bu - a \ln |a + bu|| + C\)

48. \(\int \frac{u^2 \, du}{a + bu} = \frac{1}{2b^2} \left[(a + bu)^2 - 4a(a + bu) + 2a^2 \ln |a + bu| \right] + C\)

49. \(\int \frac{du}{u(a + bu)} = \frac{1}{a} \ln \left| \frac{a + bu}{u} \right| + C\)

50. \(\int \frac{du}{u^2(a + bu)} = - \frac{1}{a} \left[ \frac{1}{u} + \frac{b}{a^2} \ln |a + bu| \right] + C\)

51. \(\int \frac{u \, du}{(a + bu)^2} = \frac{a}{b^3} + \frac{u}{a(a + bu)} + C\)

52. \(\int \frac{1}{b^2} \left[ - \frac{1}{a(b + bu)} + \frac{1}{a^2} \ln |a + bu| \right] + C\)

53. \(\int \frac{u^2 \, du}{(a + bu)^3} = \frac{1}{b^3} \left[ \frac{a}{b^2} - \frac{a^2 - 2a}{a^2(b + bu)} \right] + C\)

54. \(\int \frac{u \sqrt{a + bu} \, du}{a + bu} = \frac{2}{15b^2} (3bu - 2a)(a + bu)^{3/2} + C\)

55. \(\int \frac{u \, du}{\sqrt{a + bu}} = \frac
Transcribed Image Text:Certainly! Here's the transcription of the image as it would appear on an educational website, related to integrals: --- **Reference Pages: Table of Integrals** **Forms Involving \(a + bu\)** 47. \(\int \frac{du}{a + bu} = \frac{1}{b} \ln |a + bu - a \ln |a + bu|| + C\) 48. \(\int \frac{u^2 \, du}{a + bu} = \frac{1}{2b^2} \left[(a + bu)^2 - 4a(a + bu) + 2a^2 \ln |a + bu| \right] + C\) 49. \(\int \frac{du}{u(a + bu)} = \frac{1}{a} \ln \left| \frac{a + bu}{u} \right| + C\) 50. \(\int \frac{du}{u^2(a + bu)} = - \frac{1}{a} \left[ \frac{1}{u} + \frac{b}{a^2} \ln |a + bu| \right] + C\) 51. \(\int \frac{u \, du}{(a + bu)^2} = \frac{a}{b^3} + \frac{u}{a(a + bu)} + C\) 52. \(\int \frac{1}{b^2} \left[ - \frac{1}{a(b + bu)} + \frac{1}{a^2} \ln |a + bu| \right] + C\) 53. \(\int \frac{u^2 \, du}{(a + bu)^3} = \frac{1}{b^3} \left[ \frac{a}{b^2} - \frac{a^2 - 2a}{a^2(b + bu)} \right] + C\) 54. \(\int \frac{u \sqrt{a + bu} \, du}{a + bu} = \frac{2}{15b^2} (3bu - 2a)(a + bu)^{3/2} + C\) 55. \(\int \frac{u \, du}{\sqrt{a + bu}} = \frac
**Problem 3:** 

Find \(\int \frac{x \, dx}{x+1}\) by first dividing.

Then use Formula #47 to find \(\int \frac{x \, dx}{x+1}\).

Do your results agree?
Transcribed Image Text:**Problem 3:** Find \(\int \frac{x \, dx}{x+1}\) by first dividing. Then use Formula #47 to find \(\int \frac{x \, dx}{x+1}\). Do your results agree?
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning