x³-y³ Determine whether the function z = g(x, y) = x² + y² (why or why not) for for (x, y) = (0,0) (x, y) = (0,0) is continuous at (0,0).

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Please explain well
**Problem: Continuity of a Two-Variable Function**

**Objective:** Determine whether the function \( z = g(x, y) \) is continuous at \((0,0)\).

The function is defined as:
\[ 
g(x, y) = 
\begin{cases} 
\frac{x^3 - y^3}{x^2 + y^2} & \text{for } (x, y) \neq (0,0) \\
0 & \text{for } (x, y) = (0,0)
\end{cases}
\]

**Steps to Determine Continuity:**

1. **Evaluate the function at the point \((0,0)\):**
   \[ g(0, 0) = 0 \]

2. **Check the limit of the function as \((x,y)\) approaches \((0,0)\):**
   \[ \lim_{(x,y) \to (0,0)} \frac{x^3 - y^3}{x^2 + y^2} \]

3. **Convert to polar coordinates** for simplicity, where \( x = r \cos(\theta) \) and \( y = r \sin(\theta) \):
   \[
   \lim_{r \to 0} \frac{(r \cos(\theta))^3 - (r \sin(\theta))^3}{(r \cos(\theta))^2 + (r \sin(\theta))^2} = \lim_{r \to 0} \frac{r^3 (\cos^3(\theta) - \sin^3(\theta))}{r^2 (\cos^2(\theta) + \sin^2(\theta))}
   \]
   Simplifying further:
   \[
   = \lim_{r \to 0} r \cdot \frac{\cos^3(\theta) - \sin^3(\theta)}{\cos^2(\theta) + \sin^2(\theta)}
   \]
   Since \( \cos^2(\theta) + \sin^2(\theta) = 1 \), the expression becomes:
   \[
   \lim_{r \to 0} r (\cos^3(\theta) - \sin^3(\theta)) = 0
   \]

4. **Conclusion:**
   Since the limit
Transcribed Image Text:**Problem: Continuity of a Two-Variable Function** **Objective:** Determine whether the function \( z = g(x, y) \) is continuous at \((0,0)\). The function is defined as: \[ g(x, y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{for } (x, y) \neq (0,0) \\ 0 & \text{for } (x, y) = (0,0) \end{cases} \] **Steps to Determine Continuity:** 1. **Evaluate the function at the point \((0,0)\):** \[ g(0, 0) = 0 \] 2. **Check the limit of the function as \((x,y)\) approaches \((0,0)\):** \[ \lim_{(x,y) \to (0,0)} \frac{x^3 - y^3}{x^2 + y^2} \] 3. **Convert to polar coordinates** for simplicity, where \( x = r \cos(\theta) \) and \( y = r \sin(\theta) \): \[ \lim_{r \to 0} \frac{(r \cos(\theta))^3 - (r \sin(\theta))^3}{(r \cos(\theta))^2 + (r \sin(\theta))^2} = \lim_{r \to 0} \frac{r^3 (\cos^3(\theta) - \sin^3(\theta))}{r^2 (\cos^2(\theta) + \sin^2(\theta))} \] Simplifying further: \[ = \lim_{r \to 0} r \cdot \frac{\cos^3(\theta) - \sin^3(\theta)}{\cos^2(\theta) + \sin^2(\theta)} \] Since \( \cos^2(\theta) + \sin^2(\theta) = 1 \), the expression becomes: \[ \lim_{r \to 0} r (\cos^3(\theta) - \sin^3(\theta)) = 0 \] 4. **Conclusion:** Since the limit
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning