X-rays with a wavelength of , =9.587pm are used in a Compton scattering experiment (i.e. the photons are scattered by essentially free electrons). What is the energy, E , of the incident photons in eV? а. b. When the Compton scattered X-ray scatters to an angle (measured from the direction of the incident X-ray) of 0 =145.0° , what is the wavelength of the Compton scattered X-ray? When the Compton scattered X-ray scatters to an angle (measured from the direction of the incident X-ray) of 0 = 145.0°, what is the change in energy for the X-ray photon in eV (or the difference in energy between the scattered photon and the incident photon)? С.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
11.
X-rays with a wavelength of 1, = 9.587 pm are used in a Compton scattering
experiment (i.e. the photons are scattered by essentially free electrons).
What is the energy, E , of the incident photons in eV?
а.
b.
When the Compton scattered X-ray scatters to an angle (measured from the direction of the
incident X-ray) of 0 =145.0°, what is the wavelength of the Compton scattered X-ray?
When the Compton scattered X-ray scatters to an angle (measured from the direction of the
incident X-ray) of 0 =145.0°, what is the change in energy for the X-ray photon in eV (or
the difference in energy between the scattered photon and the incident photon)?
d.
с.
When the Compton scattered X-ray scatters to an angle (measured from the direction of the
incident X-ray) of 0 =145.0°,what is the change in kinetic energy for the scattered
electron in eV?
Transcribed Image Text:11. X-rays with a wavelength of 1, = 9.587 pm are used in a Compton scattering experiment (i.e. the photons are scattered by essentially free electrons). What is the energy, E , of the incident photons in eV? а. b. When the Compton scattered X-ray scatters to an angle (measured from the direction of the incident X-ray) of 0 =145.0°, what is the wavelength of the Compton scattered X-ray? When the Compton scattered X-ray scatters to an angle (measured from the direction of the incident X-ray) of 0 =145.0°, what is the change in energy for the X-ray photon in eV (or the difference in energy between the scattered photon and the incident photon)? d. с. When the Compton scattered X-ray scatters to an angle (measured from the direction of the incident X-ray) of 0 =145.0°,what is the change in kinetic energy for the scattered electron in eV?
Waves in general:
FORMULA PAGE 1
a y
1-dimensional wave equation:
1 a'y
; here v is the speed of the wave
v? ôt?
Solution: f(x- vt) or f(x+vt)
Harmonic or sinusoidal waves: y(x,t)= Asin(kx- ot)
2л
k
2n
= 27f; v=-
T
v = f2
General Constants:
-34
h = 6.626×10*J.s = 4.13567×10¬eV ·s ; (with recent revisions to the SI system of
units Planck's Constant is defined to have an exact value: h= 6.62607015×10¯“J·s)
–34
-19
hc = 1240 eV · nm; hc=1239.84eV · nm (for more accuracy); leV =1.6022×10-J
= 299,792, 458 m /s (exact);
-31
electron mass: m, =9.1094×10' kg
proton mass: m,
=1.6726×10-27 kg
Photons: E = hf
hc
; Protons: m,c² = 938.3MEV , Electrons: m.c² = 511.0keV
%3|
h
= 1.0546x10 34J•s = 6.5821×10-1eV ·s
Chapter 36. Diffraction
Single slit diffraction:
Minima:
a sin 0, = ma, m=1,2,3,...where a is the slit width, note: there is a maximum at
0 = 0
sin(a)
па
Intensity:
I(0) = ,,
a =
-sin(0)
m
a
Circular aperture: First minimum: sin 0 = 1.22-
Rayleigh's criterion ( 1 <d ): a =1.22-
d
Double slit experiment with slit separation d and slit width a:
sin a
Intensity: I(0) = I„(cos? B)|
where
B =
-sin 0 , a =
па
-sin O
Grating equation (normal incidence): d sin 0 = m
order in which the grating is being used, d is the line or groove spacing
m
= 0,1, 2,3,... (maxima), where m is the
Transcribed Image Text:Waves in general: FORMULA PAGE 1 a y 1-dimensional wave equation: 1 a'y ; here v is the speed of the wave v? ôt? Solution: f(x- vt) or f(x+vt) Harmonic or sinusoidal waves: y(x,t)= Asin(kx- ot) 2л k 2n = 27f; v=- T v = f2 General Constants: -34 h = 6.626×10*J.s = 4.13567×10¬eV ·s ; (with recent revisions to the SI system of units Planck's Constant is defined to have an exact value: h= 6.62607015×10¯“J·s) –34 -19 hc = 1240 eV · nm; hc=1239.84eV · nm (for more accuracy); leV =1.6022×10-J = 299,792, 458 m /s (exact); -31 electron mass: m, =9.1094×10' kg proton mass: m, =1.6726×10-27 kg Photons: E = hf hc ; Protons: m,c² = 938.3MEV , Electrons: m.c² = 511.0keV %3| h = 1.0546x10 34J•s = 6.5821×10-1eV ·s Chapter 36. Diffraction Single slit diffraction: Minima: a sin 0, = ma, m=1,2,3,...where a is the slit width, note: there is a maximum at 0 = 0 sin(a) па Intensity: I(0) = ,, a = -sin(0) m a Circular aperture: First minimum: sin 0 = 1.22- Rayleigh's criterion ( 1 <d ): a =1.22- d Double slit experiment with slit separation d and slit width a: sin a Intensity: I(0) = I„(cos? B)| where B = -sin 0 , a = па -sin O Grating equation (normal incidence): d sin 0 = m order in which the grating is being used, d is the line or groove spacing m = 0,1, 2,3,... (maxima), where m is the
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Types of Waveguide and Its Characteristics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,