Write y as the sum of a vector

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Problem Statement:

Given the vectors \( y \) and \( u \):

\[ y = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \]
\[ u = \begin{bmatrix} 9 \\ 7 \end{bmatrix} \]

Write \( y \) as the sum of a vector in the span of \( u \) and a vector orthogonal to \( u \).

### Solution:

We want to express \( y \) in the form:

\[ y = \hat{y} + z \]

Where \( \hat{y} \) is a vector in the span of \( u \), and \( z \) is a vector orthogonal to \( u \).

### Step-by-Step Explanation:

1. **Projection of \( y \) onto \( u \)**:
   
   The projection of \( y \) onto \( u \) is given by:
   \[
   \text{proj}_u y = \frac{y \cdot u}{u \cdot u} u
   \]

   Compute the dot product \( y \cdot u \):
   \[
   y \cdot u = 2 \cdot 9 + 3 \cdot 7 = 18 + 21 = 39
   \]

   Compute the dot product \( u \cdot u \):
   \[
   u \cdot u = 9^2 + 7^2 = 81 + 49 = 130
   \]

   The projection is then:
   \[
   \text{proj}_u y = \frac{39}{130} \begin{bmatrix} 9 \\ 7 \end{bmatrix} = \frac{39}{130} \begin{bmatrix} 9 \\ 7 \end{bmatrix} = \begin{bmatrix} \frac{351}{130} \\ \frac{273}{130} \end{bmatrix}
   \]

2. **Vector orthogonal to \( u \)**:
   
   The vector orthogonal to \( u \) is given by:
   \[
   z = y - \text{proj}_u y
   \]

   Compute \( z \):
   \[
   z = \begin{bmatrix} 2 \\ 3 \end{bmatrix} - \begin{bmatrix} \frac
Transcribed Image Text:### Problem Statement: Given the vectors \( y \) and \( u \): \[ y = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \] \[ u = \begin{bmatrix} 9 \\ 7 \end{bmatrix} \] Write \( y \) as the sum of a vector in the span of \( u \) and a vector orthogonal to \( u \). ### Solution: We want to express \( y \) in the form: \[ y = \hat{y} + z \] Where \( \hat{y} \) is a vector in the span of \( u \), and \( z \) is a vector orthogonal to \( u \). ### Step-by-Step Explanation: 1. **Projection of \( y \) onto \( u \)**: The projection of \( y \) onto \( u \) is given by: \[ \text{proj}_u y = \frac{y \cdot u}{u \cdot u} u \] Compute the dot product \( y \cdot u \): \[ y \cdot u = 2 \cdot 9 + 3 \cdot 7 = 18 + 21 = 39 \] Compute the dot product \( u \cdot u \): \[ u \cdot u = 9^2 + 7^2 = 81 + 49 = 130 \] The projection is then: \[ \text{proj}_u y = \frac{39}{130} \begin{bmatrix} 9 \\ 7 \end{bmatrix} = \frac{39}{130} \begin{bmatrix} 9 \\ 7 \end{bmatrix} = \begin{bmatrix} \frac{351}{130} \\ \frac{273}{130} \end{bmatrix} \] 2. **Vector orthogonal to \( u \)**: The vector orthogonal to \( u \) is given by: \[ z = y - \text{proj}_u y \] Compute \( z \): \[ z = \begin{bmatrix} 2 \\ 3 \end{bmatrix} - \begin{bmatrix} \frac
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 20 images

Blurred answer
Knowledge Booster
Magnitude
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,